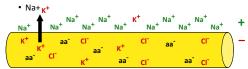


Transmission of a signal

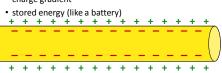
- Think dominoes!
 - start the signal
 - · knock down line of dominoes by tipping 1st one
 - ${}^{\bullet} \rightarrow {\rm trigger} ~{\rm the} ~{\rm signal}$
 - propagate the signal
 - do dominoes move down the line?
 - \rightarrow no, just a wave through them!
 - re-set the system
 - before you can do it again,
 - have to set up dominoes again
 - → reset the axon

Transmission of a nerve signal

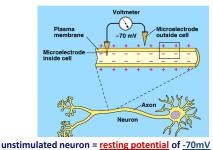

- · Neuron has similar system
 - protein channels are set up
 - once first one is opened, the rest open in succession
 - · all or nothing response

again

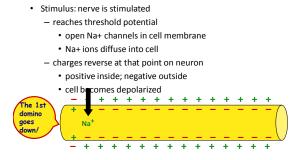
- a "wave" action travels along neuron
- have to re-set channels so neuron can react ANN

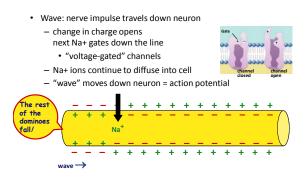

Cells: surrounded by charged ions

- · Cells live in a sea of charged ions
 - anions (negative)
 - more concentrated within the cell
 - Cl-, charged amino acids (aa-), nucleotides
 - cations (positive)
 - · more concentrated in the extracellular fluid

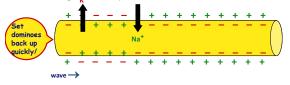


Cells have voltage!


- · Opposite charges on opposite sides of cell membrane
 - membrane is polarized
 - negative inside; positive outside
 - charge gradient

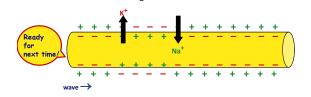

Measuring cell voltage

How does a nerve impulse travel?

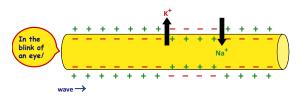


How does a nerve impulse travel?

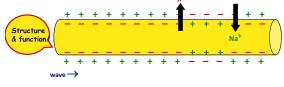
How does a nerve impulse travel?


- Re-set: 2nd wave travels down neuron
 - K+ channels open
 - K+ channels open up more slowly than Na+ channels
 - K+ ions diffuse out of cell
 - charges reverse back at that point
 - negative inside; positive outside

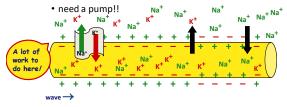
How does a nerve impulse travel?


Combined waves travel down neuron

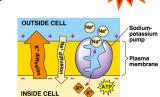
- wave of opening ion channels moves down neuron
- signal moves in one direction $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ • flow of K+ out of cell stops activation of Na+ channels in wrong direction


How does a nerve impulse travel?

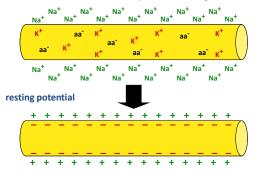
- · Action potential propagates
 - wave = nerve impulse, or action potential - brain \rightarrow finger tips in milliseconds!


Voltage-gated channels

- Ion channels open & close in response to changes in charge across membrane
 - Na+ channels open quickly in response to depolarization & close slowly
 - K+ channels open slowly in response to depolarization & close slowly

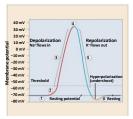

How does the nerve re-set itself?

- After firing a neuron has to re-set itself
 - Na+ needs to move back out
 - K+ needs to move back in
 - both are moving against concentration gradients

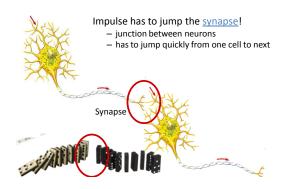


How does the nerve re-set itself?

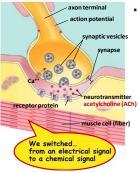
- Sodium-Potassium pump
 - active transport protein in membrane
 requires ATP
 - 3 Na+ pumped out
 - 2 K+ pumped in
 - re-sets charge across membrane



Neuron is ready to fire again

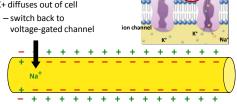


Action potential graph


- 1. Resting potential
- 2. Stimulus reaches threshold potential
- Depolarization Na+ channels open; K+ channels closed
- 4. Na+ channels close; K+ channels open
- Repolarization reset charge gradient
 Undershoot
 - K+ channels close slowly

What happens at the end of the axon?

Chemical synapse



Events at synapse

- action potential depolarizes membrane
- opens Ca⁺⁺ channels
- neurotransmitter vesicles fuse . with membrane
- release neurotransmitter to <u>synapse \rightarrow diffusion</u>
- neurotransmitter binds with protein receptor
 - ion-gated channels open neurotransmitter degraded or
 - reabsorbed

Nerve impulse in next neuron

- Post-synaptic neuron
 - triggers nerve impulse in next nerve cell
 - chemical signal opens ion-gated channels binding sit • Na+ diffuses into cell
 - K+ diffuses out of cell

Neurotransmitters

- Acetylcholine
 - transmit signal to skeletal muscle
- Epinephrine (adrenaline) & norepinephrine
- fight-or-flight response
- Dopamine
 - widespread in brain
- affects sleep, mood, attention & learning
- lack of dopamine in brain associated with Parkinson's disease
- excessive dopamine linked to schizophrenia
- Serotonin
 - widespread in brain
 - affects sleep, mood, attention & learning
- Mouse Party

Neurotransmitters

- · Weak point of nervous system
 - any substance that affects neurotransmitters or mimics them affects nerve function
 - · gases: nitrous oxide, carbon monoxide
 - · mood altering drugs:
 - stimulants
 - » amphetamines, caffeine, nicotine
 - depressants
 - » quaaludes, barbiturates
 - hallucinogenic drugs: LSD, peyote • SSRIs: Prozac, Zoloft, Paxil
 - poisons