

Nervous System

Nervous system cells

Transmission of a signal

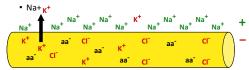
• Think dominoes!

- start the signal

- knock down line of dominoes by tipping 1st one
- $ullet
 ightarrow {
 m trigger}$ the signal

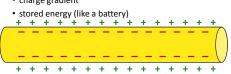
- propagate the signal

- do dominoes move down the line?
- \rightarrow no, just a wave through them!
- re-set the system
 - before you can do it again,
 - have to set up dominoes again
 - ightarrow reset the axon

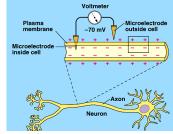


Transmission of a nerve signal

- Neuron has similar system
 - protein channels are set up
 - once first one is opened, the rest open in succession
 - all or nothing response
 - a "wave" action travels along neuron
 - have to re-set channels so neuron can react again

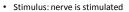

Cells: surrounded by charged ions

- Cells live in a sea of charged ions
 - anions (negative)
 - more concentrated within the cell
 - Cl-, charged amino acids (aa-), nucleotides
 - cations (positive)
 - more concentrated in the extracellular fluid

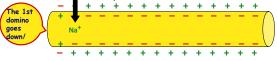


Cells have voltage!

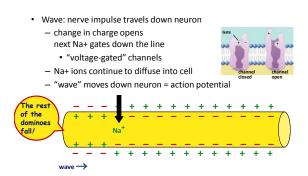
- · Opposite charges on opposite sides of cell membrane
 - membrane is polarized
 - negative inside; positive outside
 - charge gradient



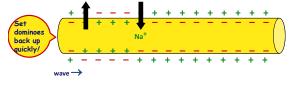
Measuring cell voltage

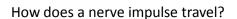


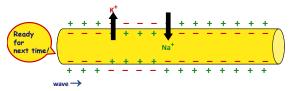
unstimulated neuron = resting potential of -70mV


How does a nerve impulse travel?

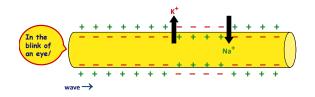
- reaches threshold potential
 - open Na+ channels in cell membrane
 - Na+ ions diffuse into cell
- charges reverse at that point on neuron
 - positive inside; negative outside
 - cell becomes depolarized



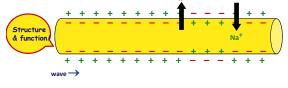

How does a nerve impulse travel?

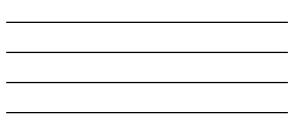

How does a nerve impulse travel?

- Re-set: 2nd wave travels down neuron
 - K+ channels open
 - K+ channels open up more slowly than Na+ channels
 - K+ ions diffuse out of cell
 - charges reverse back at that point
 - negative inside; positive outside



- Combined waves travel down neuron
 - wave of opening ion channels moves down neuron
 - signal moves in one direction \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow
 - flow of K+ out of cell stops activation of Na+ channels in wrong direction

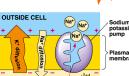

How does a nerve impulse travel?


- Action potential propagates
 - wave = nerve impulse, or action potential
 - brain \rightarrow finger tips in milliseconds!

Voltage-gated channels

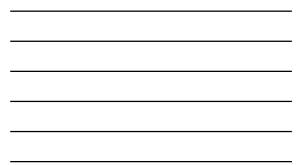

- Ion channels open & close in response to changes in charge across membrane
 - Na+ channels open quickly in response to depolarization & close slowly
 - K+ channels open slowly in response to depolarization & close slowly

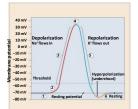
How does the nerve re-set itself?


- After firing a neuron has to re-set itself
 - Na+ needs to move back out
 - K+ needs to move back in
 - both are moving against concentration gradients

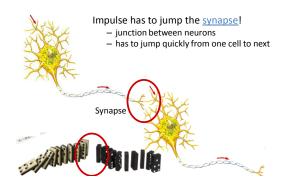
How does the nerve re-set itself?

INSIDE CELL

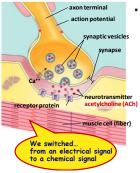

- Sodium-Potassium pump
 - active transport protein in membrane
 requires ATP
 - 3 Na+ pumped out
 - 2 K+ pumped in
 - re-sets charge
 - across membrane


$\begin{array}{c|c} \text{Neuron is ready to fire again} \\ \hline Na^{+} & Na^{+} \\ \hline Na^{+} & aa^{-} & K^{+} & aa^{-} & K^{+} & aa^{-} & K^{+} \\ \hline aa^{-} & K^{+} & aa^{-} & K^{+} & aa^{-} & K^{+} \end{array}$

Na⁺ Na⁺ Na⁺ Na⁺ Na⁺ Na[†] Na Na⁺ Na⁺ Na⁺ Na⁺ Na⁺ resting potential + + + ÷ ÷ + + + + + + + + + + + + + +



Action potential graph

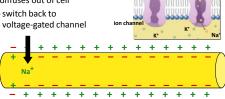

- 1. Resting potential
- 2. Stimulus reaches threshold potential
- Depolarization Na+ channels open; K+ channels closed
- 4. Na+ channels close; K+ channels open
- 5. Repolarization reset charge gradient
- 6. Undershoot K+ channels close slowly

What happens at the end of the axon?

Chemical synapse

Events at synapse

- action potential depolarizes membrane
- opens Ca⁺⁺ channels
- <u>neurotransmitter vesicles</u> fuse with membrane release neurotransmitter to
- $synapse \rightarrow diffusion$ neurotransmitter binds with
- protein receptor ion-gated channels open
 - neurotransmitter degraded or reabsorbed


Nerve impulse in next neuron

Post-synaptic neuron

- triggers nerve impulse in next nerve cell
 - chemical signal opens ion-gated channels

• Na+ diffuses into cell

• K+ diffuses out of cell - switch back to

binding sit

Neurotransmitters

- Acetylcholine
- transmit signal to skeletal muscle
- Epinephrine (adrenaline) & norepinephrine - fight-or-flight response
- Dopamine
 - widespread in brain

 - affects sleep, mood, attention & learning
 - lack of dopamine in brain associated with Parkinson's disease - excessive dopamine linked to schizophrenia
- Serotonin
 - widespread in brain
 - affects sleep, mood, attention & learning
- Mouse Party

Neurotransmitters

- Weak point of nervous system
 - any substance that affects neurotransmitters or mimics them affects nerve function
 - gases: nitrous oxide, carbon monoxide
 - mood altering drugs:
 - stimulants
 » amphetamines, caffeine, nicotine
 - depressants
 - » quaaludes, barbiturates
 - hallucinogenic drugs: LSD, peyote
 - SSRIs: Prozac, Zoloft, Paxil
 - poisons