

Phylogeny & Systematics

An unexpected family tree. What are the evolutionary relationships among a human, a mushroom, and a tulip? Molecular systematics has revealed that—despite appearances animals, including humans, and fung, such as mushrooms, are more closely related to each other than either are to plants.

Phylogeny & Systematics

Phylogeny

- evolutionary history of a species
- based on common ancestries inferred from
 fossil record
 - morphological & biochemical resemblances
 - molecular evidence
- Systematics

2004-2005

 connects classification system to phylogeny by categorizing & naming organisms

Building phylogenies

- Morphological & molecular homologies
 - similarities based on shared ancestries
 - bone structure
 - DNA sequences
 - beware of analogous structures
 - convergent evolution

Evaluating molecular homologies

- Aligning DNA sequences
 - more bases in common = more closely related
 - analyzed by software

ACGGATAGTCCACTAGGCACTA TCACCGACAGGTCTTTGACTAG

Illustrating phylogeny

• Cladograms – patterns of shared characteristics

Illustrating phylogeny

· Page 538 fig. 26.5: How to Read a Phylogenetic

Molecular Systematics

- · Hypothesizing phylogenies using molecular data
 - apply principle of <u>parsimony</u>
 - simplest explanation
 - · fewest evolutionary events that explain data

Parsimony

Choose the "tree" that explains the data invoking the fewest number of evolutionary events

2004-2005

Parsimony & analogy vs. homology

Phylogenetic trees are hypotheses Which is the most parsimonious tree?

Modern Systematics

· Shaking up some trees!

Of Mice and Men...

- · Evolving genomes
 - now that we can compare the entire genomes of different organisms, we find...
 - humans & mice have 99% of their genes in common
 - 50% of human genes have a close match with those of yeast!

- the simplest eukaryote

The Origin of Life is Hypothesis

- Special Creation
 - Was life created by a supernatural or divine force?
 - not testable
- Extraterrestrial Origin
 - Was the original source of organic (carbon) materials comets & meteorites striking early Earth?
 - testable
- Spontaneous Abiotic Origin
 - Did life evolve spontaneously from inorganic molecules?
 - testable

Conditions on early Earth

- Early atmosphere
 - water vapor (H₂O), CO₂, N₂, NO_x, H₂, NH₃, CH_4 , H_2S
 - no free oxygen
- · Energy source
 - lightning, UV radiation, volcanic

produced

-amino acids

-hydrocarbons

-nitrogen bases

-other organics

Origin of Cells (Protobionts)

• Bubbles \rightarrow separate inside from outside \rightarrow metabolism & reproduction

Theory of Endosymbiosis

• Evidence

- structural
 - mitochondria & chloroplasts resemble bacterial structure
- genetic
 - mitochondria & chloroplasts have their own circular DNA, like bacteria
- functional
 - mitochondria & chloroplasts move freely within the cell
 - mitochondria & chloroplasts reproduce independently from the cell

- ST

Cambrian explosion

- Diversification of Animals
- within 10–20 million years most of the major phyla of animals appear in fossil record

