

Evolutionary Forces New Groups

So...what is a species?

- · Biological species concept
 - defined by Ernst Mayr
 - population whose members can interbreed & produce viable, fertile offspring
 - reproductively compatible

How and why do new species originate?

- Species are created by a series of evolutionary processes
 - populations become isolated
 - geographically isolated
 reproductively isolated
 - isolated populations
- evolve independentlyIsolation
 - allopatric
 - geographic separation
 - sympatric
 - still live in same area

PRE-reproduction barriers

· Obstacle to mating OR to fertilization if mating occurs

behavioral isolation

POST-reproduction barriers

- Prevent <u>hybrid offspring</u> from developing into a viable, fertile adult
 - reduced hybrid viability
 - reduced hybrid fertility
 - hybrid breakdown

Do NOW!

On scrap paper, on your own..

- Pre or Post Zygotic Isolation? What specific type?
 - Two species of frogs mate in the lab, and produce viable but sterile offspring
 - Two species of sea urchins release gametes at the same time, but the sperm fail to fertilize the egg of a different species
 - Two species of mayflies emerge during different weeks in the spring
 - Two similar species of birds have different mating rituals

Post-Zygotic

- Reduced hybrid fertility
 - hybrids are sterile

Gametic Isolation

- Sperm of one species may not be able to fertilize eggs of another species
 - Sperm & eggs = gametes

Pre-Zygotic

- Temporal Isolation
 - Species that breed during different times of day, different seasons, or different years

Eastern spotted skunk (L) & western spotted skunk (R) overlap in range but <u>eastern</u> mates in <u>late</u> <u>winter & western</u> mates in <u>late summer</u>

Pre-Zygotic

- Behavioral Isolation
 - Unique behavioral patterns & rituals isolate species, such as $% \left({{\rm courtship}} \right)$ rituals and mating calls

<u>The Blue footed booby</u> mates only after a courtship display unique to their species

Forces of evolutionary change Natural selection traits that improve survival or reproduction will accumulate in the population adaptive change Genetic drift frequency of traits can change in a population due to chance events

random change

- Selection acts on any trait that affects survival or reproduction
 - predation selection
 - physiological selection
 - sexual selection

Predation Selection

- Predation selection
 - act on both predator & prey
 - behaviors
 - · camouflage & mimicry
 - speed
 - · defenses (physical & chemical)

Sexual Selection

- Acting on reproductive success – attractiveness to potential mate
 - fertility of gametes
 - successful rearing of offspring

The lion's mane...

- Females are attracted to males with larger, dark manes <u>Correlation</u> with higher
- testosterone levels
- better nutrition & health
- more muscle & aggression
- better sperm count / fertility
- longer life
- But imposes a cost to male *HOT*! Is it worth it??

Coevolution

- Two or more species reciprocally affect each other's evolution _____
 - predator-prey
 - competitive species
 mutualism

Effects of Selection

Genetic Drift

- Chance events changing frequency of traits in a population
 - <u>not</u> adaptation to environmental conditions
 <u>not</u> selection
 - founder effect
 - small group splinters off & starts a new colony
 - bottleneck
 - some factor (disaster) reduces population to small number & then population recovers & expands again but from a limited gene pool

Founder effect

- When a new population is started by only a small group of individuals
 - just by chance some rare <u>alleles</u> may be at high frequency; others may be missing
 - skew the <u>gene pool</u> of new population
 - human populations that started from small group of colonists
 - example: colonization of New World

Bottleneck effect

- When large population is drastically reduced by a disaster
 - famine, natural disaster, loss of habitat...
 - loss of variation by chance event

5 Agents of evolutionary change

Measuring Evolution of Populations

What are the reasons populations evolve?

Evolution = change in *allele frequencies*

Populations & gene pools

- · Concepts
 - a <u>population</u> is a localized group of interbreeding individuals
 - <u>gene pool</u> is <u>collection of alleles</u> in the population
 - remember difference between <u>alleles</u> & <u>genes</u>!
 - <u>allele frequency</u> is how common is that allele in the population
 - how many A vs. a in whole population
 - Ex: the incidence of the sickle cell allele is less than 0.5% in the US, but 15% in parts of Africa

Evolution of populations

- Evolution = <u>change in allele frequencies</u> in a population
 - <u>hypothetical</u>: what conditions would cause allele frequencies to <u>not</u> change?
 - <u>non-evolving population</u>
 <u>REMOVE</u> all agents of evolutionary change
 - 1. very large population size (no genetic drift)
 - 2. no migration (no gene flow in or out)
 - 3. no <u>mutation</u> (no genetic change)
 - 4. random mating (no sexual selection)
 - 5. no natural selection (everyone is equally fit)

Hardy-Weinberg equilibrium

- · Hypothetical, non-evolving population - preserves allele frequencies
- Serves as a model (null hypothesis)
 - natural populations rarely in H-W equilibrium
 - useful model to measure if forces are acting on a population

· measuring evolutionary change

W. Weinberg physician

Hardy-Weinberg theorem

- Counting <u>Alleles</u>
 - assume 2 alleles = B, b
 - -<u>frequency</u> of dominant allele (B) = p
 - -<u>frequency</u> of recessive allele (b) = q
 - frequencies must add to 1 (100%), so:

Hardy-Weinberg theorem

- Counting Individuals
 - frequency of <u>homozygous dominant</u>: $p \ge p^2$
 - frequency of <u>homozygous recessive</u>: $q \ge q^2$
 - frequency of <u>heterozygotes</u>: $(p \times q) + (q \times p) = 2pq$ frequencies of <u>all individuals</u> must add to 1 (100%), so:

 $p^2 + 2pq + q^2 = 1$

- H-W formulas
- · Alleles: + q = 1b в
- · Individuals: BB

Bb

 $2pq + q^2 = 1$

Using Hardy-Weinberg equation

Using Hardy-Weinberg equation

Speciation How do we create a new species?

2007-2008

So...what is a species? · Biological species concept

- population whose members can interbreed & produce viable, fertile offspring

- reproductively compatible

How and why do new species originate?

- Species are created by a series of evolutionary processes
 - populations become isolated
 - isolated populations evolve independently
- Allopatric
 - "other land"
- Sympatric
 - "same land"

Geographic isolation

• Species found in different areas separated by a physical barrier

Ecological isolation

Species occur in same region, but occupy different habitats

2 species of garter snake, *Thamnophis*, occur in same area, but one lives in water & other is terrestrial

Temporal isolation

• Species that breed during different times of day, different seasons, or different years

Eastern spotted skunk (L) & western spotted skunk (R) overlap in range but <u>eastern</u> mates in <u>late</u> <u>winter & western</u> mates in <u>late summer</u>

Behavioral isolation

 Unique behavioral patterns & rituals isolate species, such as courtship rituals and mating calls

Blue footed boobies mate only after a courtship display unique to their species

Mechanical isolation

Morphological differences can prevent successful mating

Gametic Isolation

- Sperm of one species may not be able to fertilize eggs of another species
 - Sperm & eggs = gametes

POST-reproduction barriers

- Prevent <u>hybrid offspring</u> from developing into a viable, fertile adult
 - reduced hybrid viability
 - reduced hybrid fertility

Reduced hybrid viability

• The hybrid species does not develop properly, and does not live long enough to reproduce

Reduced hybrid fertility hybrids are sterile

How Does Speciation Occur?

Punctuated Equilibrium

- Rate of speciation is not constant
 - rapid bursts of change
 - long periods of little or no change

Evolution is not goal-oriented

An evolutionary <u>trend</u> does <u>not</u> mean that evolution is <u>goal-oriented</u>.

Surviving species do not represent the peak of perfection. There is compromise & random chance involved as well

Remember that for humans as well!

