

Studying organisms in their environment

Life takes place in populations

- Population
 - group of individuals of same species in same area at same time

Population Ecology: What factors affect a population?

Characterizing a Population

- Describing a population
 - population range
 - pattern of spacing
 density

Population Range

- · Geographical limitations
 - abiotic & biotic factors
 - temperature, rainfall, food, predators, etc.
 - habitat

Population Spacing

Dispersal patterns within a population
 Provides insight into the

Which pattern is most common? Why?

Clumped Pattern

(most common)

Uniform

- May result from direct interactions between individuals in the population
 - \rightarrow territoriality

Demography

 Factors that affect growth & decline of populations

Life table vital statistics & how they change over time

Survivorship curves

· Graphic representation of life table

The relatively straight lines of the plots indicate relatively constant rates of death; however, males have a lower survival rate overall than females.

Survivorship curves

· Generalized strategies

What do these graphs tell about survival & strategy of a species?	
l.	High death rate in post-reproductive years
II.	Constant mortality rate throughout life span
III.	Very high early mortality but the few survivors then live long

Trade-offs: survival vs. reproduction

• The cost of reproduction

- increase reproduction may decrease survival

- investment per offspring
- number of reproductive cycles per lifetime

Parental survival

Kestrel Falcons: The cost of larger broods to both male & female parents

caring for offspring

Population Size

- · Changes to population size
 - adding & removing individuals from a population
 - birth
 - death
 - immigration
 - emigration

Population growth

dt

change in population = births – deaths Exponential model (ideal conditions) $dN = r_iN$ growth increasing at constant rate 2,000 dN=1.0N N = # of individuals \$ 1,500 ize r = rate of growth Population 1,000 $r_i = intrinsic rate$ t = time every pair has 4 every pair has 3 d = rate of change 500 offe offspring intrinsic rate = 10 15 maximum rate of growth 5 Number of generations

Population growth

change in population = births – deaths

Exponential model (ideal conditions)

 $G = r_i N$

G = rate of growth $r_i = intrinsic rate$ N = # of individuals

Exponential growth rate

- Characteristic of populations without <u>limiting factors</u>
 - introduced to a new environment or rebounding from a catastrophe

Logistic rate of growth

Factors that affect Population Size

Provide a start of the start of

Reproductive strategies

- K-selected
 - late reproduction
 - few offspring
 - invest a lot in raising offspring
 - primates
- coconut
- r-selected
 - early reproductionmany offspring
 - little parental care
 - insects
 - many plants

Life strategies & survivorship curves

Trade offs

Number & size of offspring vs. Survival of offspring or parent

"Of course, long before you mature, most of you will be eaten."

 Most weedy plants, such as this dandelion, grow quickly and produce a large number of seeds, ensuring that at least some w grow into plants and eventually produce seeds themselves.

(b) Some plants, such as this coconut palm, produce a moderate number of very large seeds. The large endosperm provides nutrient for the embryo, an adaptation that helps ensure the success of a relatively large fraction of offspring.

Population growth rates

- · Factors affecting population growth rate
 - sex ratio
 - how many females vs. males?
 - generation timeat what age do females reproduce?
 - age structure
 - how many females at reproductive age in cohort?

Regulation of population size marking territory Limiting factors = competition - density dependent • competition: food, mates, nesting sites · predators, parasites, pathogens - density independent • abiotic factors swarm ompetition for nesting site

Human population growth

Age structure

· Relative number of individuals of each age

Percent of population

ear of birt Before 1915 1915–1919 1920–1924 1925–1929 1930–1934 1935–1939

4

4

Percent of population

What do these data imply about population growth in these countries?

80+ 75-79 70-74 65-69 60-64 55-59 50-54 45-49 40-44 35-39 30-34 25-29 20-24 15-19

4 2

Percent of population

Estimating Population Size

- · Two Methods
 - Quadrat Sampling
 - How many Maple Trees in a State Park?
 - Mark and Recapture
 - How many Bass in a pond?

7

Quadrat Sampling

- Estimates the population density based upon a few sample plots
 - Ex: to determine how many dandelions are in a field (100m x 100m= 10,000m²), one could count the dandelions in a few smaller plots (10m by 10m= 100m²), and apply the averages to the whole area

