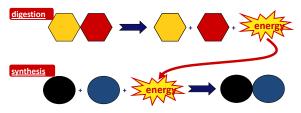
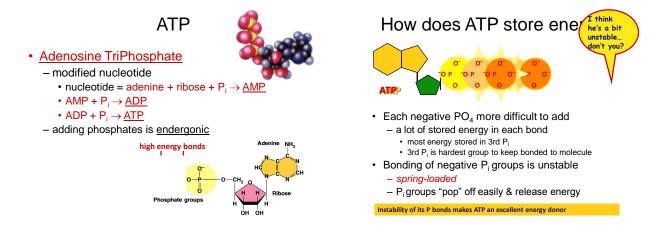


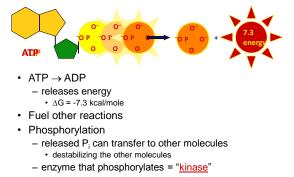
The energy needs of life

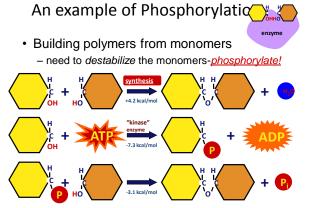
Organisms are <u>endergonic</u> systems

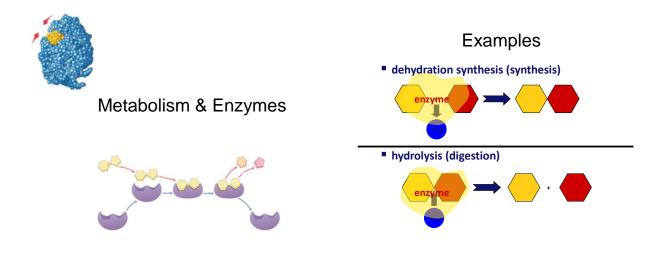

- What do we need energy for?
 - synthesis
 - building biomolecules
 - reproduction
 - movement
 - active transport
 - temperature regulation

Where do we get the energy from?


- Work of life is done by energy coupling
- use <u>exergonic</u> (catabolic) reactions to fuel <u>endergonic</u> (anabolic) reactions

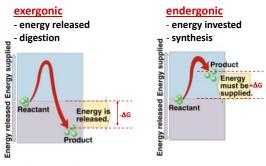

Living economy


- Fueling the body's economy
 - eat high energy organic molecules
 - food = carbohydrates, lipids, proteins, nucleic acids
 break them down
 - digest = <u>catabolism</u>
 - capture released energy in a form the cell can use
- Need an <u>energy currency</u>
 - a way to pass energy around
 - need a short term energy storage molecule

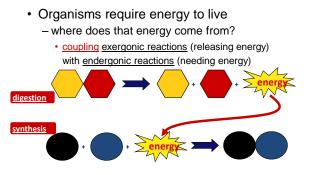


How does ATP transfer energy?

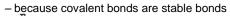
Chemical reactions & energy

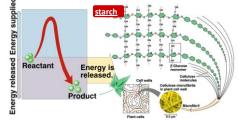

- Some chemical reactions release energy
 - exergonic
 - digesting polymers
 - hydrolysis = catabolism
- Some chemical reactions require <u>input of energy</u>
 - endergonic
 - building polymers
 - dehydration synthesis = anabolism

digesting molecules=


LESS organization= lower energy state

Endergonic vs. exergonic reactions


 ΔG = change in free energy = ability to do work

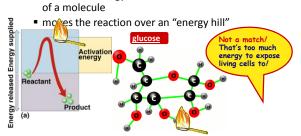

Energy & life

What drives reactions?

• If reactions are "downhill", why don't they just happen spontaneously?

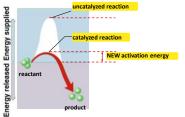
Activation energy

• Breaking down large molecules requires an initial input of energy


-activation energy

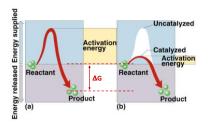
- -large biomolecules are stable
- must absorb energy to break bonds

Too much activation energy for life


Activation energy
 amount of energy needed to destabilize the bonds

Reducing Activation energy

<u>Catalysts</u>


- reducing the amount of energy to start a reaction

Catalysts

· So what's a cell got to do to reduce activation energy? **ENZYMES**

- get help! ... chemical help...

Enzymes Catalyzed Activation · Biological catalysts Reactar - proteins (& RNA) - facilitate chemical reactions · increase rate of reaction without being consumed · reduce activation energy - don't change free energy (ΔG) released or required - required for most biological reactions - highly specific · thousands of different enzymes in cells - control reactions of life

Enzymes vocabulary

substrate

Uncatalyzed

- · reactant which binds to enzyme
- · enzyme-substrate complex: temporary association

product

· end result of reaction active site

· enzyme's catalytic site; substrate fits into active site

Substrate

Properties of enzymes

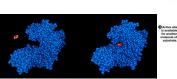
Reaction specific

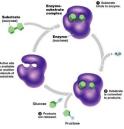
- each enzyme works with a specific substrate
 chemical fit between active site & substrate
- H bonds & ionic bonds

Not consumed in reaction

- single enzyme molecule can catalyze thousands or more reactions per second
 - · enzymes unaffected by the reaction

<u>Affected by cellular conditions</u>


any condition that affects protein structure
 temperature, pH, salinity


Naming conventions

- · Enzymes named for reaction they catalyze
 - <u>sucrase</u> breaks down sucrose
 - <u>proteases</u> break down proteinstrate
 lipases break
 - <u>pepsin</u> breaks down proteins (poly<u>peptides</u>)
 <u>pepsin</u> breaks down proteins (poly<u>peptides</u>)

Lock and Key model

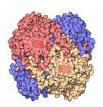
- Simplistic model of enzyme action
 - substrate fits into 3-D structure of enzyme' active site
 H bonds between substrate & enzyme
 - like "key fits into lock"

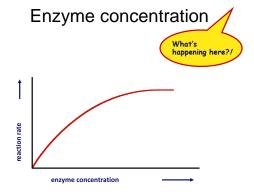
Induced fit model

- More accurate model of enzyme action
 - 3-D structure of enzyme fits substrate
 - substrate binding cause enzyme to <u>change</u> shape leading to a tighter fit
 - "conformational change"
 - bring chemical groups in position to catalyze reaction
 Active site

How does it work?

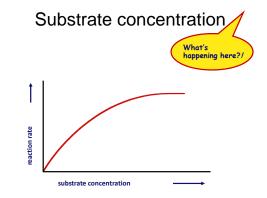
- Variety of mechanisms to lower activation energy & speed up reaction
 - synthesis
 - active site <u>orients substrates in correct position</u> for reaction
 - enzyme brings substrate closer together
 - digestion
 - active site binds substrate & puts <u>stress on</u> <u>bonds that must be broken</u>, making it easier to separate molecules


Factors that Affect Enzymes

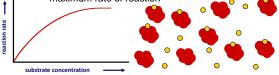


Factors Affecting Enzyme Function

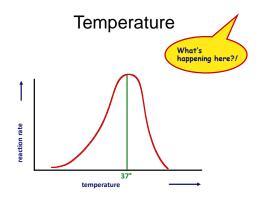
- Enzyme concentration
- Substrate concentration
- Temperature
- pH
- Salinity
- · Activators
- Inhibitors


catalase

Reaction rate = disappearance of reactant or appearance of product per unit of time


Factors affecting enzyme function

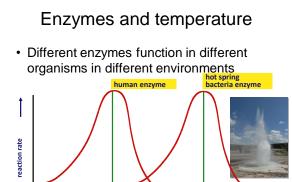
Enzyme concentration as ↑ enzyme = ↑ reaction rate more enzymes = more frequently collide with substrate reaction rate levels off substrate becomes limiting factor not all enzyme molecules can find substrate



Factors affecting enzyme function

- Substrate concentration
 - as \uparrow substrate = \uparrow reaction rate
 - more substrate = more frequently collide with enzyme
 - reaction rate levels off
 - all enzymes have active site engaged
 - enzyme is <u>saturated</u>
 - maximum rate of reaction

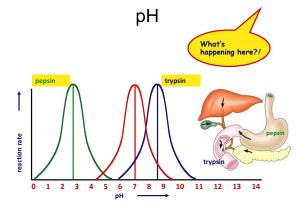
http://www.youtube.com/watch?v =0YGF5R9i53A


Factors affecting enzyme function

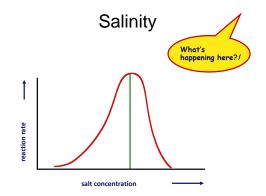
Temperature

- Optimum T°
 - greatest number of molecular collisions
 - human enzymes = 35°- 40°C
 body temp = 37°C
- $Heat: increase beyond optimum T^{\circ}$
- increased energy level of molecules disrupts bonds in enzyme & between enzyme & substrate - H, ionic = weak bonds
- <u>denaturation</u> = lose 3D shape (3° structure)
- <u>Cold: decrease T°</u>

molecules move <u>slower</u>


decrease collisions between enzyme & substrate

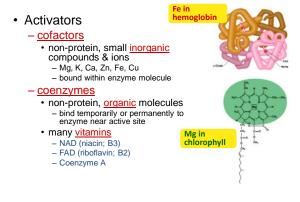
70°C


(158°F)

37°C temperature

Factors affecting enzyme function

- pH
 - changes in pH
 - adds or remove H⁺
 - disrupts bonds, disrupts 3D shape
 - disrupts attractions between charged amino acids
 - affect 2° & 3° structure
 denatures protein
 - optimal pH?
 - most human enzymes = pH 6-8
 - depends on localized conditions
 - pepsin (stomach) = pH 2-3
 - <u>trypsin</u> (small intestines) = pH 8



Factors affecting enzyme function

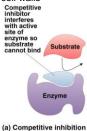
Salt concentration

- changes in salinity
 - adds or removes cations (+) & anions (-)
 - disrupts bonds, disrupts 3D shape
 - disrupts attractions between charged amino acids
 affect 2° & 3° structure
 - denatures protein
- enzymes intolerant of extreme salinity
 - · Dead Sea is called dead for a reason!

Compounds which help enzymes

Compounds which regulate enzymes

- Inhibitors
 - molecules that reduce enzyme activity
 - competitive inhibition
 - noncompetitive inhibition
 - irreversible inhibition
 - feedback inhibition



Competitive Inhibitor

- · Inhibitor & substrate "compete" for active site penicillin blocks enzyme bacteria use to build cell walls

 - disulfiram (Antabuse) treats chronic alcoholism
 - blocks enzyme that breaks down alcohol

 - severe hangover & vomiting 5-10 minutes after drinking
- Overcome by increasing substrate concentration
 - saturate solution with substrate so it out-competes inhibitor for active site on enzyme

Non-Competitive Inhibitor

- · Inhibitor binds to site other than active site
 - allosteric inhibitor binds to allosteric site
 - causes enzyme to change shape
 - · conformational change
 - · active site is no longer functional binding site - keeps enzyme inactive
 - <u>some anti-cancer drugs</u>
 - inhibit enzymes involved in DNA synthesis
 - stop DNA production · stop division of more cancer cells
 - cyanide poisoning
 - irreversible inhibitor of Cytochrome C, an enzyme in cellular respiration stops production of ATP

Substrat

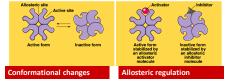
(b) Noncompetitive inhibition

- Irreversible inhibition
- Inhibitor permanently binds to enzyme

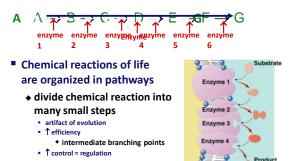
- competitor

· permanently binds to active site

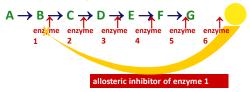
- allosteric


- · permanently binds to allosteric site
- · permanently changes shape of enzyme
- nerve gas, sarin, many insecticides (malathion, parathion...)

- cholinesterase inhibitors


» doesn't breakdown the neurotransmitter, acetylcholine

Allosteric regulation


- Conformational changes by regulatory molecules
 - inhibitors
 - keeps enzyme in inactive form
 - activators
 - keeps enzyme in active form

Metabolic pathways

- Feedback Inhibition
- Regulation & coordination of production
 - product is used by next step in pathway
 - final product is inhibitor of earlier step
 allosteric inhibitor of earlier enzyme
 - <u>feedback inhibition</u>
 - no unnecessary accumulation of product

