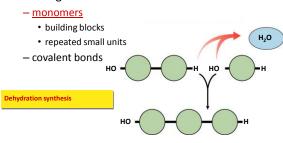
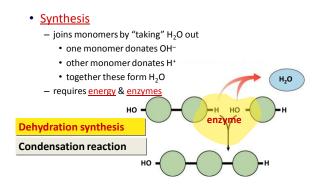

Macromolecules

Building Blocks of Life


Macromolecules

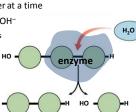
- Smaller organic molecules join together to form larger molecules
 - <u>macromolecules</u>
- 4 major classes of macromolecules:
 - <u>carbohydrates</u>
 - <u>lipids</u>
 - proteins
 - <u>nucleic acids</u>



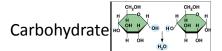
Polymers

• Long molecules built by linking repeating building blocks in a chain

How to build a polymer


How to break down a polymer

• Digestion


- use H₂O to breakdown polymers
 - reverse of dehydration synthesis
 - cleave off one monomer at a time

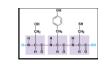
но

- H₂O is split into H⁺ and OH⁻
- H⁺ & OH[−] attach to ends
- requires <u>enzymes</u>
- releases energy
 - Hydrolysis Digestion

Macromolecule Overview

- Monomer
 - Monosaccharide
 - Carbon ring
- Polymer
- Polysaccharide
- Bond
 - Glycosidic linkage

Function energy


- raw materials
- energy storage
- structural compounds
- Examples
 - glucose, starch, cellulose, glycogen

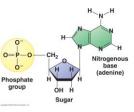
Lipids

- Structure / building block
 - Glycerol, 3 fatty acids (neutral fat)
 - Phosphate, 2 fatty acids (phospholipid)
- Bond
 - Ester linkage (fat)
- Function
 - Energy storage (neutral fat)
 - Membranes (phospholipid)Hormones (steroid)
 - vamples
- Examples
 - fat, phospholipids, steroids

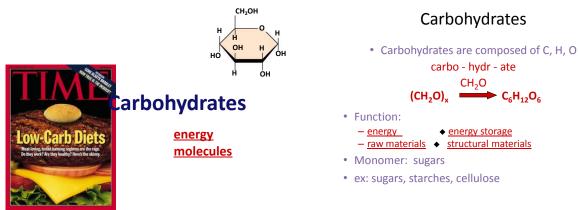
Proteins

- Monomer
 - amino acids
 - N-C-C backbone
- Polymer Polypeptide
 - Protein (functional unit)
- Bond
 - Peptide bond

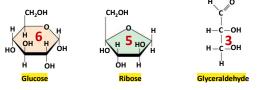
- Function - Enzymes, defense,
 - receptors, transport, structure, signals


• Examples

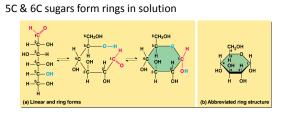
- digestive enzymes, membrane channels, insulin hormone, actin


Nucleic acids

- Monomer
 - Nucleotide Phosphate group, nitrogenous base, sugar
- Bond
- Phosphodiester bond
- Function
- information storage & transfer
- Examples
- DNA, RNA



 \blacktriangleright C₆H₁₂O₆



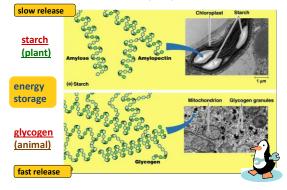
Sugars

- Most names for sugars end in -ose
- Classified by number of carbons
 - 6C = hexose (glucose)
 - 5C = pentose (ribose)
 - 3C = triose (glyceraldehyde)

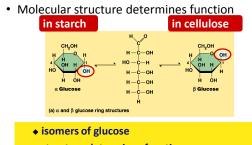
Sugar structure

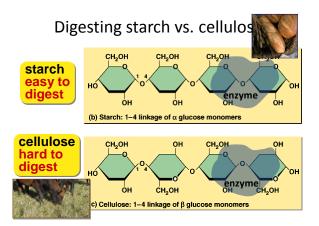
Carbons are numbered

Polysaccharides


- Polymers of sugars

 costs little energy to build
 costs little energy to build
 - easily reversible = release energy
- Function:
 - <u>energy storage</u>
 - <u>starch</u> (plants)
 - <u>glycogen</u> (animals)
 in liver & muscles
 - structure
 - <u>cellulose</u> (plants)
 <u>chitin</u> (arthropods & fungi)




linear vs. branched polysaccharides

Polysaccharide diversity

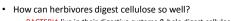
structure determines function...

Cellulose

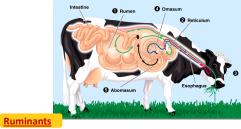
herbivores have evolved a mechanism to digest cellulose

- most carnivores have not
 - that's why they <u>eat meat</u> to get their energy & nutrients
 - <u>cellulose = undigestible roughag</u>

Cow


<u>can digest</u> cellulose well; no need to eat other sugars

Gorilla


<u>can't digest</u> cellulose well; must add another sugar source, like fruit to diet

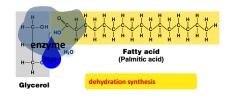
Helpful bacteria

 BACTERIA live in their digestive systems & help digest cellulose-rich (grass) meals

long term energy storage concentrated energy

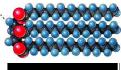
2006-2007

Lipids


- Lipids are composed of C, H, O – <u>long hydrocarbon chains (H-C)</u>
- "Family groups"
 - <u>fats</u>
 - <u>phospholipids</u>
 - <u>steroids</u>

- big molecules made of smaller subunits
- <u>not</u> a continuing chain

- Fats
- Structure:
 - glycerol (3C alcohol) + fatty acid
 - fatty acid = long HC "tail" with carboxyl (COOH) group "head"

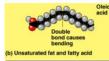

Fats store energy

- Long HC chain
 - polar or non-polar?
 - hydrophilic or hydrophobic?
- Function:
 - <u>energy storage</u>
 concentrated
 - all H-C!
 - 2x carbohydrates
 - <u>cushion organs</u>
 - insulates body
 think whale blubber!

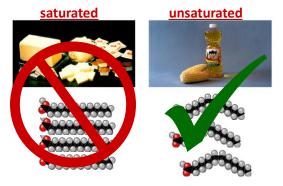
c?	>)														
н-сто			H-0-H	H-C-H	H 		H-Ý-H	H-C-H	H-Q-H	H-C-H	H-Q-H	H-C-H	H-Q-H	H L L	H	,н
																.н
н-сто н		ł				•										/Н
		NOW AND A DESCRIPTION OF A DESCRIPTION O	C. dille					A DUMAN		and a second		No. of Street, or Stre	-	Control 1		

Saturated fats

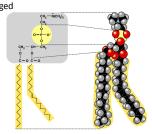
- All C bonded to H
- No C=C double bonds
 - long, straight chain
 - <u>most animal fats</u>
 <u>solid at room temp.</u>
 - contributes to cardiovascular disease (atherosclerosis)
 plaque deposits



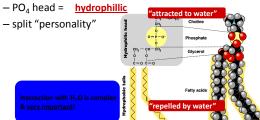
(a) Saturated fat and fatty acid


Unsaturated fats

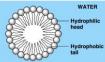
- C=C double bonds in the fatty acids
 - plant & fish fats
 - vegetable oils
 - liquid at room temperature
 - the kinks made by double bonded C prevent the molecules from packing tightly together


Saturated vs. unsaturated

Phospholipids

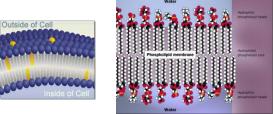

- Structure:
 - glycerol + 2 fatty acids + PO_4

PO₄ = negatively charged

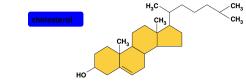

Phospholipids

- Hydrophobic or hydrophilic?
- fatty acid tails = <u>hydrophobic</u>

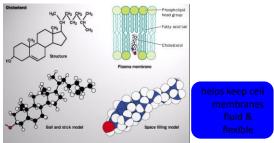
Phospholipids in water

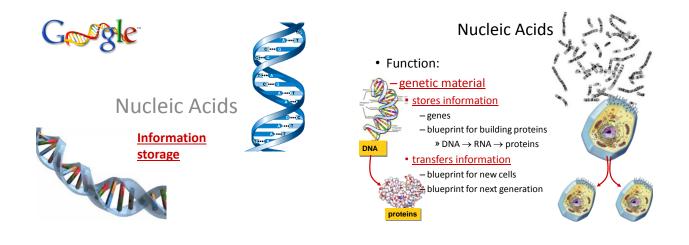

- Hydrophilic heads "attracted" to H₂O
- Hydrophobic tails "hide" from H₂O
 - can self-assemble into "bubbles"
 - bubble = "micelle"
 - can also form a <u>phospholipid bilayer</u>
 - early evolutionary stage of cell?

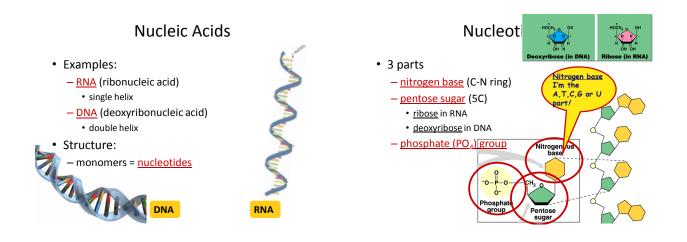
ary	y stage of cell?	water	
	bilayer	water	
		water	


Why is this important?

- Phospholipids create a barrier in water
 - define outside vs. inside
 - they make <u>cell membranes!</u>

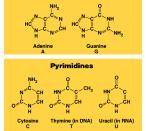

Steroids


- Structure:
 - 4 fused C rings + ??
 - different steroids created by attaching different <u>functional groups</u> to rings
 - different structure creates different function
 - examples: cholesterol, sex hormones

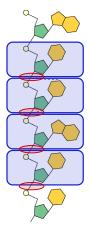


Cholesterol

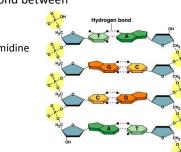
Important component of cell membrane



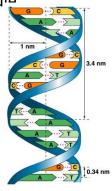
Types of nucleotides


- 2 types of nucleotides
 - different nitrogen bases
 - purines
 - double ring N base
 - adenine (A)
 - guanine (G)
 - <u>pyrimidines</u>
 - single ring N base
 cytosine (C)
 - thymine (T)
 - <u>uracil (U)</u>

Purines

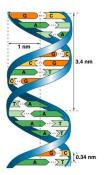

Nucleic polymer

- Backbone
 - sugar to PO₄ bond
 - phosphodiester bond
 - new base added to sugar of previous base
 - polymer grows in one direction
 - N bases hang off the
 - sugar-phosphate backbone


Pairing of nucleotides

- Nucleotides bond between DNA strands
 - H bonds
 - purine :: pyrimidine
 - <u>A :: T</u>
 - 2 H bonds
 - G :: C
 - 3 H bonds

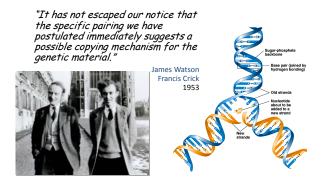
DNA molecule


- Double helix
 - <u>H bonds</u> between bases join the 2 strands
 - A :: T
 - C :: G

Copying DNA

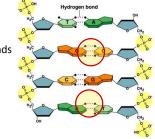
• Replication

- <u>2 strands of DNA helix are</u> complementary
 - have one, can build other
 - have one, can rebuild the whole



When does a cell copy DNA?

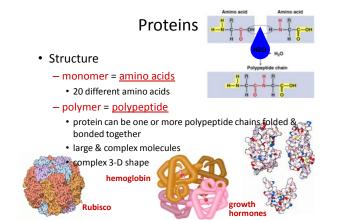
• When in the life of a cell does DNA have to be copied?

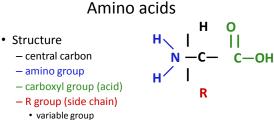


DNA replication

Interesting note...

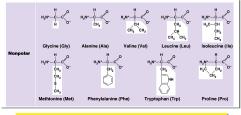
- Ratio of A-T::G-C affects stability of DNA molecule
 - 2 H bonds vs. 3 H bonds
 - biotech procedures
 - more G-C = need higher T° to
 - separate strands – high T° organisms
 - many G-C


Proteins


Multipurpose molecules

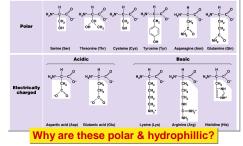
Proteins

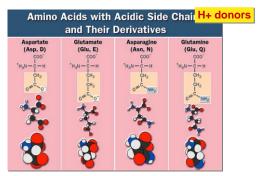
- Most structurally & functionally diverse group
- Function: involved in almost everything
 - enzymes (pepsin, DNA polymerase)
 - <u>structure</u> (keratin, collagen)
 - carriers & transport (hemoglobin, aquaporin)
 - cell communication
 - signals (insulin & other hormones)
 - <u>receptors</u>
 - <u>defense</u> (antibodies)
 - <u>movement</u> (actin & myosin)
 <u>storage</u> (bean seed proteins)
 - storage (bean seed proteins)



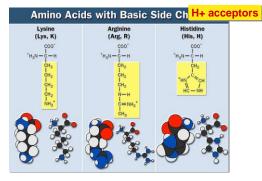
- different for each amino acid
- confers unique chemical properties to each amino acid – like 20 different letters of an alphabet
 - can make many words (proteins)

Effect of different R groups: Nonpolar amino acids


nonpolar & hydrophobic

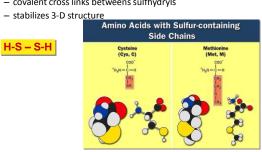

Why are these nonpolar & hydrophobic?

Effect of different R groups: Polar amino acids



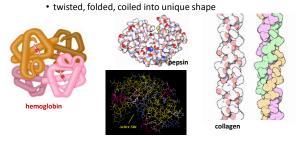
Ionizing in cellular waters

Ionizing in cellular waters

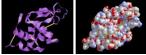


Sulfur containing amino acids

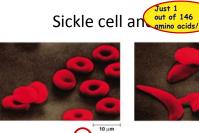
• Form disulfide bridges


H-S – S-H

- covalent cross links betweens sulfhydryls


Protein structure & function

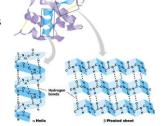
- Function depends on structure
 - 3-D structure

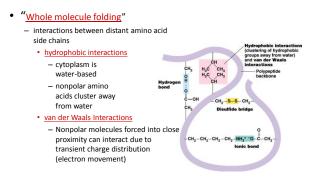

Primary (1°) structure • Order of amino acids in chain - amino acid sequence determined by gene (DNA) - slight change in amino acid sequence can affect protein's structure & its function

• even just one amino acid change can make all the difference!

ysozyme: enzyme in tears & mucus that kills acteria

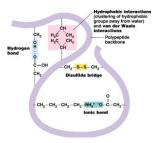
Val His Leu Thr Pro Glu Glu ... 1 2 3 4 5 6 7 (a) Normal red blood cells and the structure of normal hemoglol


Val His Leu Thr Pro 1 2 3 4 5 Glu (b) Sickled red blood ce structure of sicklend the prim


Secondary (2°) structure

"Local folding"

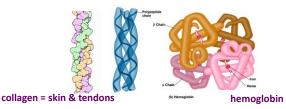
- folding along short sections of polypeptide
- interactions between the backbones of adjacent amino acids
 - <u>H bonds</u>
- forms sections of 3-D structure
 - <u>α-helix</u>
 - <u>β-pleated sheet</u>



Tertiary (3°) structure

Tertiary (3°) structure

- <u>H bonds</u>
- <u>Ionic bonds</u>
- **Disulfide bridges**
 - covalent bonds between sulfurs in sulfhydryls (S–H) anchors 3-D shape



Quaternary (4°) structure

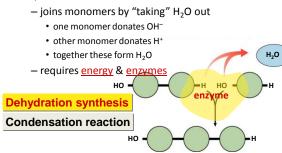
<u>More than one polypeptide chain</u> bonded together

 only then does polypeptide become functional protein

<u>hydrophobic interactions</u>

16

Protein denaturation


• Unfolding a protein

- conditions that disrupt H bonds, ionic bonds, disulfide

- bridges • temperature
- <u>pH</u>
- <u>salinity</u>
- alter 2° & 3° structure
- alter 3-D shape
- <u>destroys functionality</u>
 - some proteins can return to their functional shape after denaturation, many cannot

How to build a polymer

How to break down a polymer

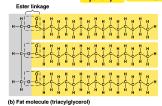
но

но

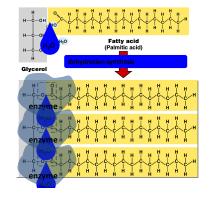
H₂O

enzyme

- Digestion
 - use H_2O to breakdown polymers
 - reverse of dehydration synthesis
 - cleave off one monomer at a time
 - H₂O is split into H⁺ and OH⁻
 H⁺ & OH⁻ attach to ends
 - requires <u>enzymes</u>
 - releases energy
 - Hydrolysis
 - Digestion

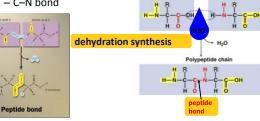

исоse glucose glycosidic linkage

Building sugars


Dehydration synthesis
 monosaccharide
 disaccharide

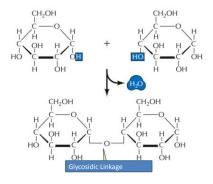
Building Fats

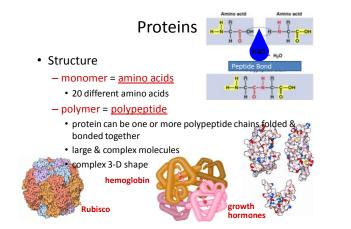
- Triacylglycerol
 - 3 fatty acids linked to glycerol
 - ester linkage = between OH & COOH hydroxyl carboxyl


Dehydration synthesis

Building proteins

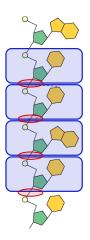
- Peptide bonds
 - covalent bond between NH₂ (amine) of one amino acid & COOH (carboxyl) of another

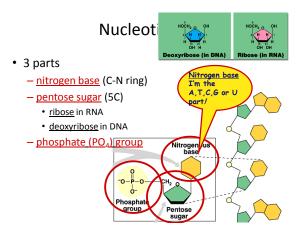

Do NOW! (on your own, no notes!)


- 1. Identify the monomer and bond type for carbohydrates, proteins, and nucleic acids.
- 2. Identify the three parts of a *nucleotide*
- 3. Name & give a function for the three classes of *lipids*.

Carbohydrates

Monomer: Monosaccharide or simple sugar

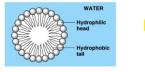

Carbohydrates

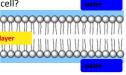

Nucleic acid

- Nucleotide monomers
 - sugar to PO₄ bond
 - phosphodiester bond
 - new base added to sugar of previous base
 - polymer grows in one direction
 - N bases hang off the sugar-phosphate backbone

Do NOW!

- Identify the <u>monomer</u> and <u>bond type</u> for <u>carbohydrates</u>, <u>proteins</u>, and <u>nucleic acids</u>.
- 2. Identify the three parts of a *nucleotide*
- 3. Name & give a function for the three classes of *lipids*.




Do NOW!

- Identify the <u>monomer</u> and <u>bond type</u> for <u>carbohydrates</u>, <u>proteins</u>, and <u>nucleic acids</u>.
- 2. Identify the three parts of a *nucleotide*
- 3. Name & give a function for the three classes of *lipids*.

Phospholipids in water

- Hydrophilic heads "attracted" to H₂O
- <u>Hydrophobic tails "hide" from H₂O</u>
 - can self-assemble into "bubbles"
 - bubble = "micelle"
 - can also form a phospholipid bilayer
 - early evolutionary stage of cell?

Fats store energy

Long HC chain

polar ornon-polar2
hydrophilic orhydrophobic?

Function:

energy storage
concentrated
- all H-Cl
2x carbohydrates
cushion organs
insulates body
think whale blubber!

Steroids

- Structure:
 - 4 fused C rings + ??
 - different steroids created by attaching different <u>functional groups</u> to rings
 - different structure creates different function

