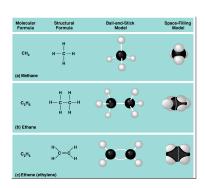
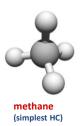
Chemistry of Carbon

Building Blocks of Life

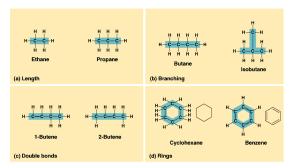
- Why study Carbon?
- All of life is built on carbon
- Cells
 - − ~72% H₂O
 - ~25% carbon compounds
 - carbohydrates
 - lipids
 - proteins
 - nucleic acids
 - ~3% salts
 - Na, Cl, K...

Chemistry of Life


- Organic chemistry is the study of carbon compounds
- C atoms are versatile building blocks
 - bonding properties
 - 4 stable covalent bonds

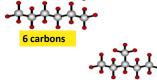


Complex Molecules



Hydrocarbons

- · Combinations of C & H
 - -non-polar
 - not soluble in H₂O
 - hydrophobic
 - -stable
 - very little attraction between molecules


Hydrocarbons can grow

Isomers

6 carbons

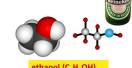
- Molecules with same molecular formula but different structures (shapes)
 - different chemical properties
 - different biological functions

Form affects function

- Structural differences create important functional significance
 - amino acid alanine
 - L-alanine used in proteins
 - but not D-alanine
 - medicines
 - L-version active
 - but not D-version
 - sometimes with tragic results...

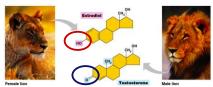
Form affects function

- Thalidomide
 - prescribed to pregnant women in 50s & 60s
 - reduced morning sickness, but...
 - isomer caused severe birth defects



Diversity of molecules

- · Substitute other atoms or groups around the carbon
 - ethane vs. ethanol
 - H replaced by an hydroxyl group (–OH)
 - · nonpolar vs. polar
 - gas vs. liquid



Functional groups

- · Parts of organic molecules that are involved in chemical reactions
 - give organic molecules distinctive properties
 - hydroxyl
- amino
- carbonyl
- sulfhydryl
- carboxyl
- phosphate
- Affect reactivity
 - makes hydrocarbons hydrophilic
 - increase solubility in water

Viva la difference!

- · Basic structure of male & female hormones is identical
 - identical carbon skeleton
 - attachment of different functional groups
 - interact with different targets in the body
 - · different effects

Hydroxyl

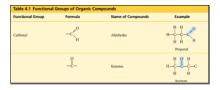
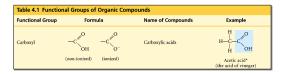
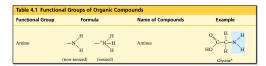

- –OH
 - organic compounds with OH = alcohols
 - names typically end in -ol
 - ethanol

Table 4.1 Functional Groups of Organic Compounds				
Functional Group	Formula	Name of Compounds	Example	
Hydroxyl	—он	Alcohols	H H H OH	
			Ethanol (the drug of alcoholic beverages)	

Carbonyl


- C=O
 - O double bonded to C
 - if C=O at end molecule = aldehyde
 - if C=O in middle of molecule = ketone

Carboxyl


- -COOH
 - C double bonded to O & single bonded to OH group
 - compounds with COOH = acids
 - fatty acids
 - amino acids

Amino

- -NH₂
 - N attached to 2 H
 - compounds with NH₂ = <u>amines</u>amino acids
 - NH₂ acts as base
 - ammonia picks up H+ from solution

Sulfhydryl

- -SH
 - S bonded to H
 - compounds with $SH = \underline{thiols}$
 - SH groups stabilize the structure of proteins

Table 4.1 Functional Groups of Organic Compounds				
Functional Group	Formula	Name of Compounds	Example	
Sulfhydryl	—ѕн	Thiols	H H H—C—C—SH H H	
			Ethanethiol	

Phosphate

- -PO₄
 - P bound to 4 O
 - connects to C through an O
 - lots of O = lots of negative charge
 highly reactive
 - transfers energy between organic molecules ATP, GTP, etc.

