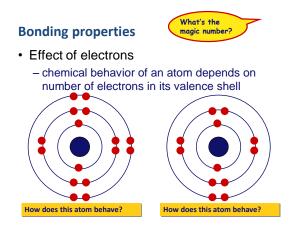
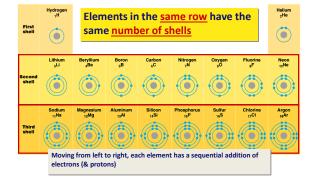
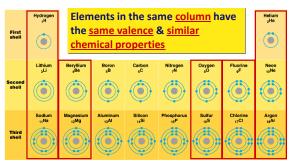

Chemistry of Life

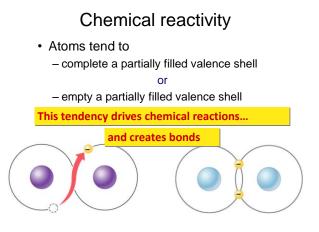

Life requires ~25 chemical elements

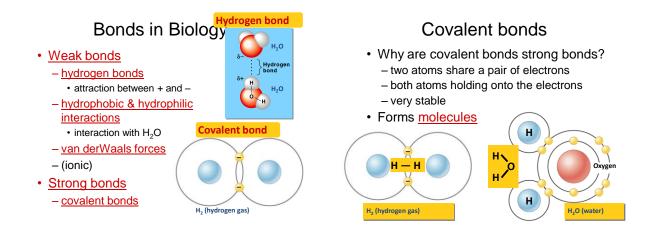
- · About 25 elements are essential for life
 - Four elements make up 96% of living matter:
 - <u>carbon (C)</u>
- <u>hydrogen (H)</u>
- <u>oxygen (O)</u> <u>nitrogen (N)</u>
- Four elements make up most of remaining 4%:
 - phosphorus (P) calcium (Ca)
 - sulfur (S)
- potassium (K)

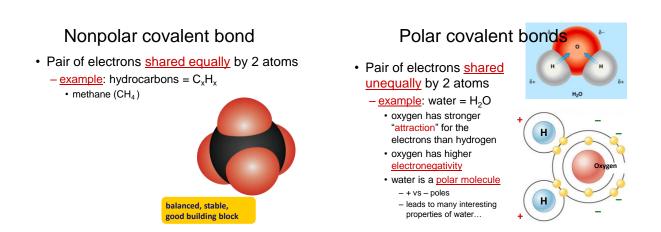

Bonding properties

- · Effect of electrons
 - electrons determine chemical behavior of atom
 - depends on <u>number</u> of electrons in atom's outermost shell
 valence shell

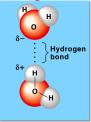




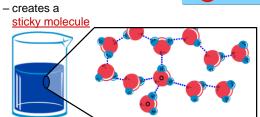

Elements & their valence shells



Elements & their valence shells



3

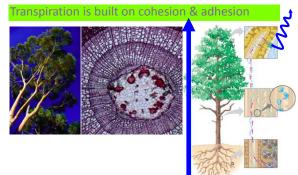

Hydrogen bonding

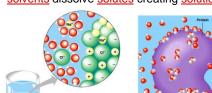
- · Polar water creates molecular attractions
 - <u>attraction between positive H in one H₂O</u> molecule to negative O in another H₂O
 - also can occur wherever an -<u>OH</u> exists in a larger molecule
- Weak bond

Chemistry of water

- H₂O molecules form H-bonds with each other
 - +H attracted to -O

Elixir of Life

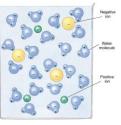

- · Special properties of water
 - 1. cohesion & adhesion
 - surface tension, capillary action
 - 2. good solvent
 - many molecules dissolve in $\rm H_2O$
 - <u>hydrophilic</u> vs. <u>hydrophobic</u>
 <u>lower density as a solid</u>
 - ice floats!
 - 4. high specific heat
 - water stores heat
 - 5. high heat of vaporization
 - · heats & cools slowly



How does H_2O get to top of trees?

2. Water is the solvent of life

 Polarity makes H₂O a good solvent - polar H₂O molecules surround + & - ions - solvents dissolve solutes creating solutions



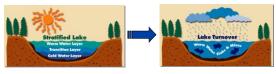
What dissolves in water?

• Hydrophilic

-substances have attraction to H₂O

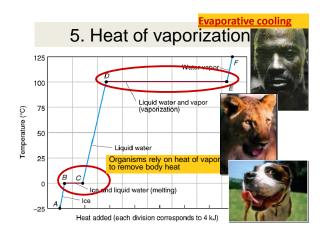
What doesn't dissolve in water?

• Hydrophobic -substances that don't have an attraction to H₂O -polar o non-polar?


fat (triglycerol)

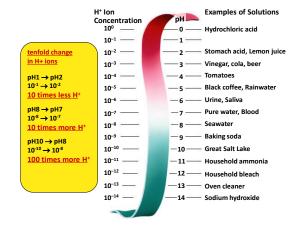
3. The special case of ice Most (all?) substances are more dense when they are solid, but not water... Ice floats! H bonds form a crystal

Why is "ice floats" important?


- · Oceans & lakes don't freeze solid
 - surface ice insulates water below
 - allowing life to survive the winter
 - if ice sank…
 - ponds, lakes & even oceans would freeze solid
 - in summer, only upper few inches would thaw
 - seasonal turnover of lakes
 - sinking cold H₂O cycles nutrients in autumn

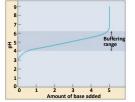
- 4. Specific heat
- H₂O resists changes in temperature
 - high specific heat
 - takes a lot to heat it up
 - takes a lot to cool it down
- H<u>2O moderates temperatures on Earth</u>

Ionization of water & pH


Water ionizes

- -H⁺ splits off from H₂O, leaving OH⁻
 - if [H⁺] = [⁻OH], water is <u>neutral</u>
 - if [H⁺] > [-OH], water is <u>acidic</u>
 - if [H⁺] < [⁻OH], water is <u>basic</u>
- pH scale
 - -how acid or basic solution is
 - $-1 \rightarrow 7 \rightarrow 14$

 $H_{2}O \rightarrow H^{+} + OH^{-}$


Ionization of water & pH

- pH = -log[H+]
 Higher [H+] = lower pH
- $[H+][OH-] = 10^{-14}$ - $n^a n^b = n^{a+b}$

Buffers & cellular regulation

- pH of cells must be kept ~7
 - pH affects shape of molecules
 - shape of molecules affect function
 - pH affects cellular function
- Control pH by <u>buffers</u>
 - reservoir of H⁺
 - donate H+ when [H⁺] falls
 - absorb H+ when [H⁺] rises

