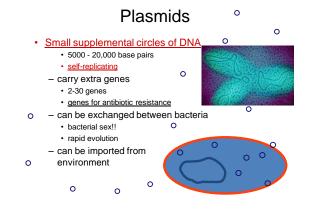
Bacteria

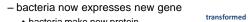
- · Bacteria review
 - one-celled prokaryotes
 - reproduce by mitosis
 binary fission
 - rapid growth
 - generation every ~20 minutes
 - 10⁸ (100 million) colony overnight!

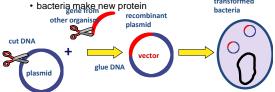
- incredibly diverse


Bacterial genome

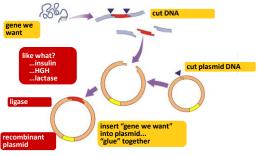
- Single circular chromosome
 - haploid
 naked DNA
 no histone proteins
 ~4 million base pairs
 ~4300 genes
 1/1000 DNA in eukaryote

Transformation


- · Bacteria are opportunists
 - pick up naked foreign DNA wherever it may be hanging out
 - have surface transport proteins that are specialized for the uptake of naked DNA
 - import bits of chromosomes from other bacteria
 - incorporate the DNA bits into their own chromosome
 - · express new genes
 - transformation
 - · form of recombination



How can plasmids help us?


- · A way to get genes into bacteria easily
 - insert new gene into plasmid
 - insert plasmid into bacteria = vector

Biotechnology

· Plasmids used to insert new genes into bacteria

Madam I'm Adam

Х

CTGAATTCCG GACTTAAGGC

CTG|AATTCCG GACTTAA|GGC

How do we cut DNA?

- Restriction enzymes
 - restriction endonucleases
 - discovered in 1960s
 - evolved in bacteria to cut up foreign DNA
 - · "restrict" the action of the attacking organism
 - · protection against viruses & other bacteria
 - bacteria protect their own DNA by not using the base
 - sequences recognized by the enzymes in their own DNA

Restriction enzymes

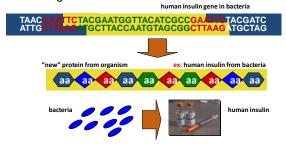
- Action of enzyme
 - cut DNA at specific sequences restriction site
 - symmetrical "palindrome"
 - produces protruding ends
 - sticky ends
 - · will bind to any complementary DNA
- · Many different enzymes
 - named after organism they are found in • EcoRI, HindIII, BamHI, SmaI

Restriction enzymes

· Cut DNA at specific sites

-
 <u>leave "sticky ends"</u>
restriction enzyme cut site
GTAAC <mark>GAATTC</mark> ACGCTT
CATTG <mark>CTTAAG</mark> TGCGAA
T restriction enzyme cut site

GTAACG AATTCACGCTT CATTGCTTAA GTGCGAA


Sticky ends

- · Cut other DNA with same enzymes - leave "sticky ends" on both
 - can glue DNA together at "sticky ends"

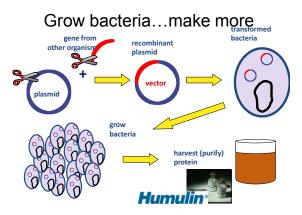
GTAAC <mark>G AATTC</mark> ACGCTT	gene
CATTG <mark>CTTAA G</mark> TGCGAA	you want
GGACCTG AATTCCGGATA CCTGGACTTAA GGCCTAT	chromosome want to add gene to
GGACCTG AATTCACGCTT	combined
CCTGGACTTAA GTGCGAA	DNA

Why mix genes together?

· Gene produces protein in different organism or different individual

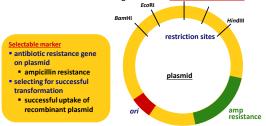
The code is universal

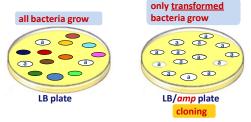
- · Since all living organisms...
 - use the same DNA
 - use the same code
 - book
 - read their genes the same way



Copy (& Read) DNA

- Transformation
 - insert <u>recombinant</u> plasmid into bacteria
 - grow recombinant bacteria in agar cultures
 bacteria make lots of copies of plasmid
 - "cloning" the plasmid
 - production of many copies of inserted gene
 - production of "new" protein
 - transformed phenotype

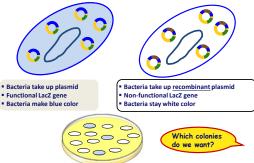

 $DNA \rightarrow RNA \rightarrow protein \rightarrow trait$


Engineered plasmids

- · Building custom plasmids
 - restriction enzyme sites
 - antibiotic resistance genes as a selectable marker

Selection for plasmid uptake

- Antibiotic becomes a <u>selecting agent</u>
 - only bacteria with the plasmid will grow on antibiotic (ampicillin) plate



Need to screen plasmids

Screening for recombinant plasmid

