Bacteria

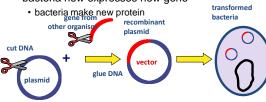
- · Bacteria review
 - one-celled prokaryotes
 - reproduce by mitosis
 - binary fission
 - rapid growth
 - generation every ~20 minutes
 - 108 (100 million) colony overnight!

Bacterial genome

- · Single circular chromosome
 - haploid
 - naked DNA
 - no histone proteins
 - ~4 million base pairs
 - ~4300 genes
 - 1/1000 DNA in eukaryote

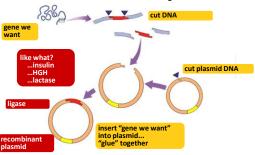
Transformation

- · Bacteria are opportunists
 - pick up naked foreign DNA wherever it may be hanging out
 - have surface transport proteins that are specialized for the uptake of naked DNA
 - import bits of chromosomes from other bacteria
 - incorporate the DNA bits into their own chromosome
 - · express new genes
 - transformation
 - form of recombination


Plasmids • Small supplemental circles of DNA • 5000 - 20,000 base pairs • self-replicating - carry extra genes • 2-30 genes • genes for antibiotic resistance - can be exchanged between bacteria • bacterial sex!! • rapid evolution - can be imported from environment

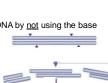
How can plasmids help us?

- · A way to get genes into bacteria easily
 - insert new gene into plasmid


0

- insert plasmid into bacteria = <u>vector</u>
- bacteria now expresses new gene

Biotechnology


· Plasmids used to insert new genes into bacteria

How do we cut DNA?

- · Restriction enzymes
 - restriction endonucleases
 - discovered in 1960s
 - evolved in bacteria to cut up foreign DNA
 - "restrict" the action of the attacking organism
 - protection against viruses
 - & other bacteria

bacteria protect their own DNA by not using the base sequences recognized by the enzymes in their own DNA

Restriction enzymes

- · Action of enzyme
 - cut DNA at specific sequences · restriction site
 - symmetrical "palindrome"
 - produces protruding ends
 - · sticky ends
 - will bind to any complementary DNA
- · Many different enzymes
 - named after organism they are found in
 - EcoRI, HindIII, BamHI, SmaI

Restriction enzymes

- · Cut DNA at specific sites
 - leave "sticky ends"

GTAACGAATTCACGCTT CATTGCTTAAGTGCGAA

restriction enzyme cut site

GTAACG AATTCACGCTT CATTGCTTAA GTGCGAA

Madam I'm Adam

Sticky ends

- · Cut other DNA with same enzymes
 - leave "sticky ends" on both
 - can glue DNA together at "sticky ends"

GTAACG AATTCACGCTT
CATTGCTTAA GTGCGAA

gene you want

GGACCTG AATTCCGGATA
CCTGGACTTAA GGCCTAT

chromosome want to add gene to

GGACCTG AATTCACGCTT
CCTGGACTTAA GTGCGAA

combined DNA

Why mix genes together?

 Gene produces protein in different organism or different individual

human insulin gene in bacteria

TAAC 3AA TCTACGAATGGTTACATCGCCGAATTC TACGATC
ATTG TTAAGA GCTTACCAATGTAGCGGCTTAAGATGCTAG

"new" protein from organism

ex: human insulin from bacteria


aa bacteria

bacteria

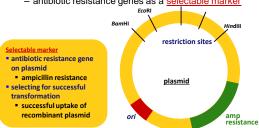
human insulin

The code is universal

- Since all living organisms...
 - use the same DNA
 - use the same code book
 - read their genes the same way

Copy (& Read) DNA

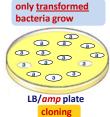
- Transformation
 - insert recombinant plasmid into bacteria
 - grow recombinant bacteria in agar cultures
 - bacteria make lots of copies of plasmid
 - · "cloning" the plasmid
 - production of many copies of inserted gene
 - production of "new" protein
 - · transformed phenotype



Grow bacteria...make more bacteria recombinant plasmid bacteria harvest (purify) protein

Engineered plasmids

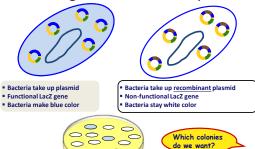
- · Building custom plasmids
 - restriction enzyme sites
 - antibiotic resistance genes as a selectable marker



	•	

Selection for plasmid uptake

- Antibiotic becomes a selecting agent
 - only bacteria with the plasmid will grow on antibiotic (ampicillin) plate



Need to screen plasmids

 Need to make sure bacteria have recombinant plasmid

Screening for recombinant plasmid

