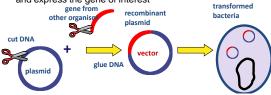
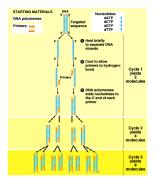
Biotechnology


Cloning

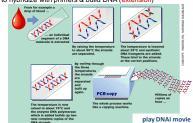
- · What is it?
 - The production of multiple copies of a single gene (gene cloning)
- · How is it used?
 - For basic research on genes and their protein products
 - To make a protein product (insulin, human growth hormone)

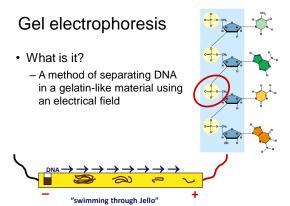
Transformation

- · What is it?
 - The ability of bacteria to pick up naked foreign DNA from the environment
- · How is it used?
 - We can engineer plasmids which bacteria will take up and express the gene of interest


Restriction Enzymes

- · What is it?
 - evolved in bacteria to cut up foreign DNA for protection against viruses other bacteria
- · How is it used?
 - cut DNA at specific sequences called restriction sites which are symmetrical palindromes
 - produces protruding ends called <u>sticky ends</u> which will bind to any complementary DNA
 - video


Polymerase Chain Reaction

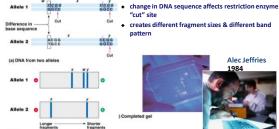

- · What is it?
 - method for making many, many copies of a specific segment of DNA

Polymerase Chain Reaction

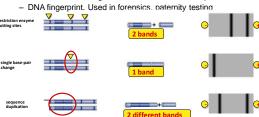
- · How is it used?
 - in tube: DNA, DNA polymerase enzyme, primer, nucleotides
 - denature DNA: heat (90°C) DNA to separate strands
 - anneal DNA: cool to hybridize with primers & build DNA (extension)

Gel electrophoresis

- · How is it used?
 - size of DNA fragment affects how far it travels
 - · small pieces travel farther
 - · large pieces travel slower & lag behind



Restriction Fragment Length Polymorphisms (RFLPs)


Restriction Fragment Length Polymorphisms (RFLPs)

- What is it?
 - differences in DNA between individuals

RFLPs

- · How is it used?
 - many differences accumulate in "junk" DNA
 - change in DNA sequence affects restriction enzyme "cut" site
 - creates different fragment sizes & different band pattern

Chapter 19.

Viral Genetics

What is a virus? Is it alive?

- · DNA or RNA enclosed in a protein coat
- · Viruses are not cells
- · Extremely tiny
 - electron microscope size
 - smaller than ribosomes
 - ~20-50 nm

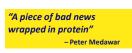
1st discovered in plants (1800s)

- tobacco mosaic virus
- couldn't filter out
- couldn't reproduce on media like

Variation in viruses

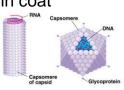
Parasites

- ◆ lack enzymes for metabolism
- lack ribosomes for protein synthesis
- need host "machinery"



Variation in viruses

· A package of genes in transit from one host cell to another


Viral genomes

- Viral nucleic acids
 - DNA
 - · double-stranded
 - · single-stranded
 - - · double-stranded
 - · single-stranded
 - Linear or circular
 - smallest viruses have only 4 genes, while largest have several hundred

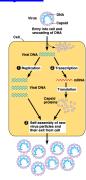
Class*	Examples/Diseases
I. dsDNA**	
Papovavirus	Papilloma (human warts, cervical cancer); polyoma (tumors in certain animals)
Adenovirus	Respiratory diseases; some cause tumors in certain animals
Herpesvirus	Herpes simplex I (cold sores), herpes simplex II (genital sores); varicella zoster (chicken pox, shingles); Epstein-Barr virus (mononucleosis, Burkitt's lymphoma)
Poxvirus	Smallpox; vaccinia, cowpox
II. ssDNA	
Parvovirus	Roseola; most parvoviruses depend on co- infection with adenoviruses for growth
III. dsRNA	
Reovirus	Diarrhea; mild respiratory diseases
IV. ssRNA that can	serve as mRNA
Picornavirus	Poliovirus; rhinovirus (common cold); enteric (intestinal) viruses
Togavirus	Rubella virus; yellow fever virus; encephalitis viruses
V. ssRNA that is a	template for mRNA
Rhabdovirus	Rabies
Paramyxovirus	Measles; mumps
Orthomyxovirus	Influenza viruses

Viral protein coat

- Capsid
 - crystal-like protein shell
 - 1-2 types of proteins
 - many copies of same protein

Viral envelope

- · Lipid bilayer membranes cloaking viral capsid
 - envelopes are derived from host cell membrane
 - · glycoproteins on surface



HIV

Generalized viral lifecycle

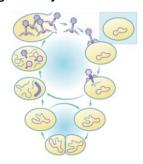
- · Entry
- virus DNA/RNA enters host cell
- Assimilation
- viral DNA/RNA takes over host
 - reprograms host cell to copy viral nucleic acid & build viral proteins
- Self assembly
 - nucleic acid molecules & capsomeres then self-assemble into viral particles
 - exit cell

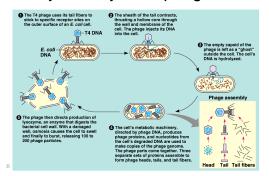
Viral hosts

- · Host range
 - most types of virus can infect & parasitize only a limited range of host cells
 - · identify host cells via "lock & key" fit
 - between proteins on viral coat & receptors on host cell surface
 - broad host range
 - rabies = can infect all mammals
 - narrow host range
 - human cold virus = only cells lining upper respiratory tract of humans
 - · HIV = binds only to specific white blood cells

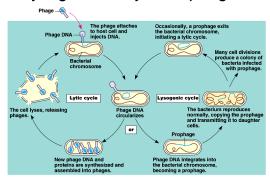
Bacteriophages

- · Viruses that infect bacteria
 - ex. phages that infect E. coli
 - · lambda phage
 - 20-sided capsid head encloses
 DNA
 - protein tail attaches phage to host & injects phage DNA inside




(d)Bacteriophage T4

Bacteriophage lifecycles


- Lytic
 - reproduce virus in bacteria
 - release virus by rupturing bacterial host
- Lysogenic
 - integrate viral DNA into bacterial DNA
 - reproduce with bacteria

Lytic lifecycle of phages

Lysogenic lifecycle of phages

Defense against viruses

- · Bacteria have defenses against phages
 - bacterial mutants with receptors that are no longer recognized by a phage
 - · natural selection favors these mutants
 - bacteria produce <u>restriction enzymes</u>
 - · recognize & cut up foreign DNA
- · It's an escalating war!
 - natural selection favors phage mutants resistant to bacterial defenses

RNA viruses

- Retroviruses
 - have to copy viral RNA into host DNA
 - enzyme = <u>reverse transcriptase</u>
 - RNA \rightarrow DNA \rightarrow mRNA
 - host's RNA polymerase now transcribes viral DNA into viral mRNA
 - mRNA codes for viral components
 - · host's ribosomes produce new viral proteins

