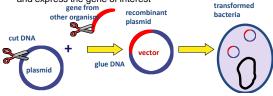
Biotechnology

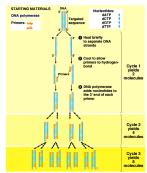

Cloning

- · What is it?
 - The production of multiple copies of a single gene (gene cloning)
- · How is it used?
 - For basic research on genes and their protein products
 - To make a protein product (insulin, human growth hormone)

Transformation

- · What is it?
 - The ability of bacteria to pick up naked foreign DNA from the environment
- · How is it used?
 - We can engineer plasmids which bacteria will take up and express the gene of interest gene from recombinant

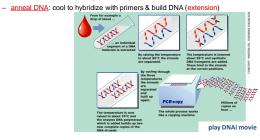
Restriction Enzymes

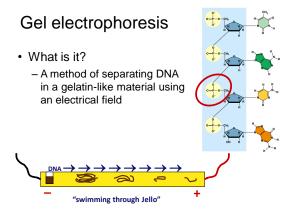


- · What is it?
 - evolved in bacteria to cut up foreign DNA for protection against viruses other bacteria
- How is it used?
 - cut DNA at specific sequences called restriction sites which are symmetrical palindromes
 - produces protruding ends called <u>sticky ends</u> which will bind to any complementary DNA

– <u>video</u>

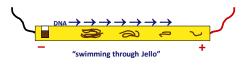
Polymerase Chain Reaction


- · What is it?
 - method for making many, many copies of a specific segment of DNA



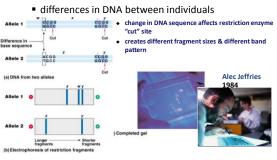
Polymerase Chain Reaction

· How is it used?


- in tube: DNA, DNA polymerase enzyme, primer, nucleotides
- <u>denature DNA</u>: heat (90°C) DNA to separate strands

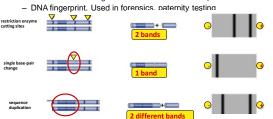
Gel electrophoresis

- · How is it used?
 - size of DNA fragment affects how far it travels
 - small pieces travel farther
 - · large pieces travel slower & lag behind



Restriction Fragment Length Polymorphisms (RFLPs)

Restriction Fragment Length Polymorphisms (RFLPs)


What is it?

· How is it used?

- many differences accumulate in "junk" DNA
- change in DNA sequence affects restriction enzyme "cut" site
- creates different fragment sizes & different band pattern

Chapter 19.

Viral Genetics

2010

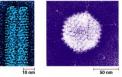
2005-2006

What is a virus? Is it alive?

- DNA or RNA enclosed in a protein coat
- Viruses are <u>not</u> cells
- · Extremely tiny
 - electron microscope size
 - smaller than ribosomes
 - ~20–50 nm

1st discovered in plants (1800s)

- tobacco mosaic virus
- couldn't filter out
- couldn't reproduce on media like bacteria



Variation in viruses

- Parasites
 - lack enzymes for metabolism
 - lack ribosomes for protein synthesis
 - need host "machinery"

pink eve

Variation in viruses

influenza

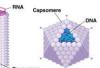
 A package of genes in transit from one host cell to another

"A piece of bad news wrapped in protein" – Peter Medawar

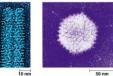
bacteriophage

Viral genomes

- Viral nucleic acids
 - DNA
 - double-stranded
 - single-stranded
 - RNA
 - double-stranded
 - single-stranded
 - Linear or circular
 - smallest viruses have only 4 genes, while largest have several hundred


Table 18.1 Classes of Animal Viruses, Grouped by Type of Nucleic Acid								
Class*		Examples/Diseases						
I.	dsDNA**							
	Papovavirus	Papilloma (human warts, cervical cancer); polyoma (tumors in certain animals)						
	Adenovirus	Respiratory diseases; some cause tumors in certain animals						
	Herpesvirus	Herpes simplex I (cold sores), herpes simplex II (genital sores); varicella zoster (chicken pox, shingles); Epstein-Barr virus (mononucleosis, Burkitt's lymphoma)						
	Poxvirus	Smallpox; vaccinia, cowpox						
п.	ssDNA							
	Parvovirus	Roseola; most parvoviruses depend on co- infection with adenoviruses for growth						
ш.	dsRNA							
	Reovirus	Diarrhea; mild respiratory diseases						
IV.	V. ssRNA that can serve as mRNA							
	Picornavirus	Poliovirus; rhinovirus (common cold); enteric (intestinal) viruses						
	Togavirus	Rubella virus; yellow fever virus; encephalitis viruses						
V. ssRNA that is a template for mRNA								
	Rhabdovirus	Rabies						
	Paramyxovirus	Measles; mumps						
	Orthomyxovirus	Influenza viruses						
VI	ssRNA that is a	template for DNA synthesis						

RNA tumor viruses (e.g., leukemia HIV (AIDS virus)


1				

Viral protein coat

- Capsid
 - crystal-like protein shell
 - 1-2 types of proteins
 - many copies of same protein

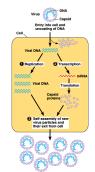
Capsomere of capsid

(a)Tobacco (b)Adenoviruses mosaic virus

Viral envelope

- Lipid bilayer membranes cloaking viral capsid
 - envelopes are derived from host cell membrane
 - · glycoproteins on surface

HIV



Glycoprotein

Capsid

Generalized viral lifecycle

- Entry
 - virus DNA/RNA enters host cell
- Assimilation
 - viral DNA/RNA takes over host
 reprograms host cell to copy viral nucleic acid & build viral proteins
- Self assembly
 - nucleic acid molecules & capsomeres then self-assemble into viral particles
 - exit cell

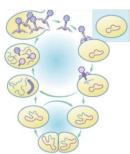
Viral hosts

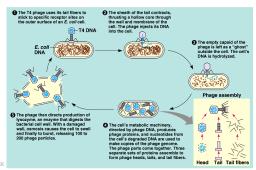
· Host range

- most types of virus can infect & parasitize only a limited range of host cells
 - identify host cells via "lock & key" fit
 - between proteins on viral coat & receptors on host cell surface
- broad host range
 - rabies = can infect all mammals
- narrow host range
 - human cold virus = only cells lining upper respiratory tract of humans
 - HIV = binds only to specific white blood cells

Bacteriophages

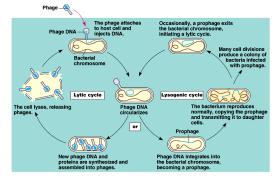
- · Viruses that infect bacteria
 - ex. phages that infect E. coli
 - lambda phage
 - 20-sided capsid head encloses DNA
 - protein tail attaches phage to host & injects phage DNA inside




(d)Bacteriophage T4

Bacteriophage lifecycles

- Lytic
 - reproduce virus in bacteria
 - release virus by rupturing bacterial host
- Lysogenic
 - integrate viral DNA into bacterial DNA
 - reproduce with bacteria



Lytic lifecycle of phages

Lysogenic lifecycle of phages

Defense against viruses

- · Bacteria have defenses against phages
 - bacterial mutants with receptors that are no longer recognized by a phage
 - natural selection favors these mutants
 - bacteria produce restriction enzymes
 - recognize & cut up foreign DNA
- · It's an escalating war!
 - natural selection favors phage mutants resistant to bacterial defenses

RNA viruses

- Retroviruses
 - have to copy viral RNA into host DNA
 - enzyme = <u>reverse transcriptase</u>
 - RNA \rightarrow DNA \rightarrow mRNA
 - host's RNA polymerase now transcribes viral DNA into viral mRNA
 - mRNA codes for viral components
 - · host's ribosomes produce new viral proteins

