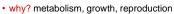
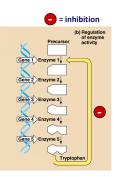


Control of Prokaryotic (Bacterial) Genes



how? stop production of enzymes for synthesis

 if they find new food/energy source, need to utilize it quickly

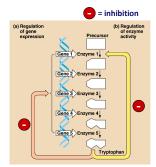

how? start production of enzymes for digestion

Remember Regulating Metabolism?

· Feedback inhibition

 product acts as an <u>allosteric inhibitor</u> of 1st enzyme in tryptophan pathway

 but this is wasteful production of enzymes



Different way to Regulate Metabolism

Gene regulation

 instead of blocking enzyme function, block transcription of genes for all enzymes in tryptophan pathway

 saves energy by not wasting it on unnecessary protein synthesis

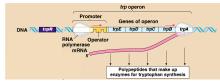
Gene regulation in bacteria

 Cells can vary the amount of specific enzymes by <u>regulating gene transcription</u>

- turn genes on or turn genes off

turn genes OFF example

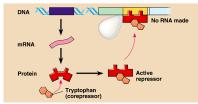
- if bacterium has enough tryptophan then it doesn't need to make enzymes used to build tryptophan
 - turn genes ON example

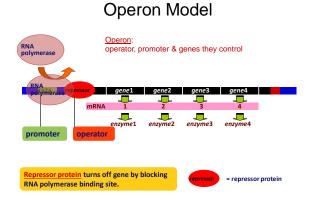


if bacterium encounters new sugar (energy source), like lactose, then it needs to start making enzymes used to <u>digest</u> lactose

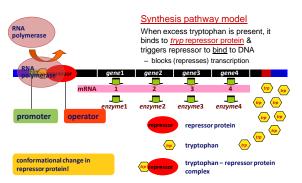
Bacteria group genes together

Operon

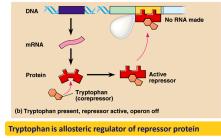

- genes grouped together with related functions
 example: all enzymes in a metabolic pathway
- promoter = RNA polymerase binding site
 single promoter controls transcription of all genes in operon
 transcribed as <u>one unit</u> & a single mRNA is made
- <u>operator</u> = DNA binding site of <u>repressor protein</u>



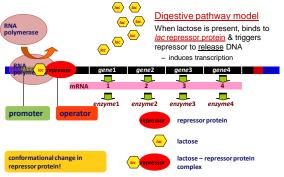
So how can these genes be turned off?


<u>Repressor protein</u>

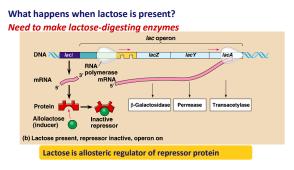
- binds to DNA at operator site
- blocking RNA polymerase
- blocks transcription



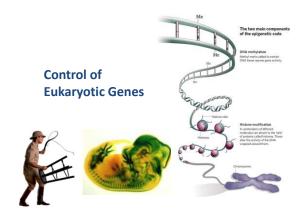
Repressible operon: tryptophan



Tryptophan operon


What happens when tryptophan is present? Don't need to make tryptophan-building enzymes

Inducible operon: lactose



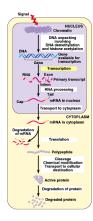
Lactose operon

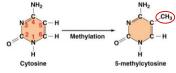
Operon summary

- <u>Repressible operon</u> (Trp Operon)
 - usually functions in anabolic pathways • synthesizing end products
 - when end product is present in excess, cell allocates resources to other uses
- Inducible operon (Lac Operon)
 - usually functions in catabolic pathways, · digesting nutrients to simpler molecules
 - produce enzymes only when nutrient is available · cell avoids making proteins that have nothing to do, cell allocates resources to other uses

The BIG Questions.

- · How are genes turned on & off in eukaryotes?
- How do cells with the same genes differentiate to perform completely different, specialized functions?




Points of control

- · The control of gene expression can occur at any step in the pathway from gene to functional protein
 - 1. packing/unpacking DNA
 - 2. transcription
 - 3. mRNA processing
 - 4. mRNA transport
 - 5. translation
 - 6. protein processing
 - 7. protein degradation

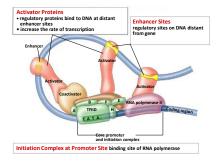
DNA methylation

- Methylation of DNA blocks transcription factors - no transcription
 - → genes turned off
 - attachment of methyl groups (-CH₃) to cytosine · C = cytosine
 - nearly permanent inactivation of genes
 - ex. inactivated mammalian X chromosome = Barr body

Transcription initiation

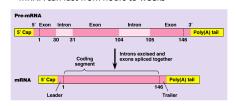
Control regions on DNA

- promoter


- <u>nearby</u> control sequence on DNA
- binding of RNA polymerase & transcription factors
- · "base" rate of transcription

- enhancer

- · distant control sequences on DNA
- · binding of activator
- proteins
- · "enhanced" rate (high level) of transcription


Transcription complex

Regulation of mRNA degradation

- 5' cap and Poly-A Tail
- Life span of mRNA determines amount of protein synthesis

 mRNA can last from hours to weeks

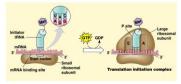
• Small interfering RNAs (siRNA)

- short segments of RNA (21-28 bases)
 - bind to mRNA
 - · create sections of double-stranded mRNA
 - · "death" tag for mRNA
 - triggers degradation of mRNA

– cause gene "silencing"

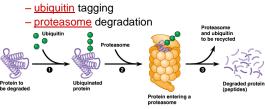
- post-transcriptional control
- turns off gene = no protein produced

1990s | 2006 RNA interference


Andrew Fire Stanford Craig Mello U Mass

Nobel Prize

"for their discovery of RNA interference gene silencing by double-stranded RNA"


Control of translation

- · Block initiation of translation stage
 - regulatory proteins attach to 5' end of mRNA
 prevent attachment of ribosomal subunits & initiator
 - tRNA
 - block translation of mRNA to protein

Protein processing & degradation

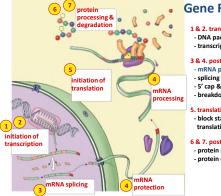
- Protein processing
 - folding, cleaving, adding sugar groups, targeting for transport
- Protein degradation

1980s | 2004

Ubiquitin

- · "Death tag"
 - mark unwanted proteins with a label
 - 76 amino acid polypeptide, ubiquitin
 - labeled proteins are broken down rapidly in "waste disposers"

proteasomes


Proteasome

- · Protein-degrading "machine"
 - cell's waste disposer
 - breaks down any proteins into 7-9 amino acid fragments

Gene Regulation

- 1 & 2. transcription
- DNA packing transcription factors

3 & 4. post-transcription - mRNA processing

- 5' cap & poly-A tail breakdown by siRNA
- 5. translation - block start of translation
- 6 & 7. post-translation - protein processing - protein degradation