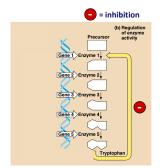


Control of Prokaryotic (Bacterial) Genes

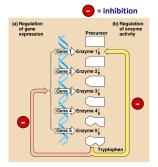
Bacterial metabolism

- Bacteria need to respond quickly to changes in their environment
 - if they have enough of a product, need to stop production


- why? waste of energy to produce more
- how? stop production of enzymes for synthesis
- if they find new food/energy source, need to utilize it quickly

- why? metabolism, growth, reproduction
- how? start production of enzymes for digestion

Remember Regulating Metabolism?


- Feedback inhibition
 - product acts
 as an <u>allosteric inhibitor</u>
 of 1st enzyme in
 tryptophan pathway
 - but this is wasteful production of enzymes

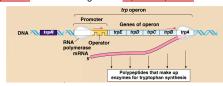
1	
T	

Different way to Regulate Metabolism

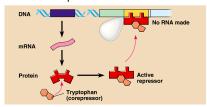
- · Gene regulation
 - instead of blocking enzyme function, block transcription of genes for all enzymes in tryptophan pathway
 - saves energy by not wasting it on unnecessary protein synthesis

Gene regulation in bacteria

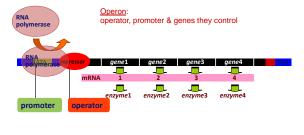
- Cells can vary the amount of specific enzymes by <u>regulating gene transcription</u>
 - turn genes on or turn genes off
 - turn genes OFF example


if bacterium has enough tryptophan then it doesn't need to make enzymes used to <u>build</u> tryptophan

turn genes ON example
if bacterium encounters new sugar (energy source), like lactose, then it needs to start making enzymes used to digest lactose

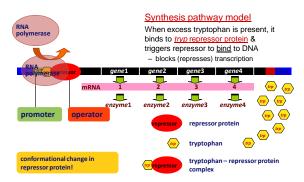

Bacteria group genes together

- Operon
 - genes grouped together with related functions
 - example: all enzymes in a metabolic pathway
 - <u>promoter</u> = RNA polymerase binding site
 - single promoter controls transcription of all genes in operon
 - transcribed as <u>one unit</u> & a single mRNA is made
 - operator = DNA binding site of repressor protein

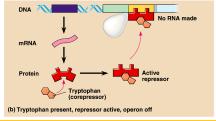


So how can these genes be turned off?

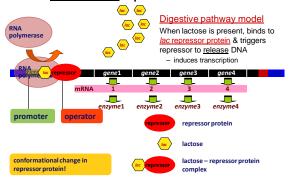
- Repressor protein
 - binds to DNA at operator site
 - blocking RNA polymerase
 - blocks transcription


Operon Model

Repressor protein turns off gene by blocking RNA polymerase binding site.


Repressible operon: tryptophan

Tryptophan operon


What happens when tryptophan is present?

Don't need to make tryptophan-building enzymes

Tryptophan is allosteric regulator of repressor protein

Inducible operon: lactose

Lactose operon

What happens when lactose is present?

Need to make lactose-digesting enzymes

lac operon

DNA

RNA

RNA

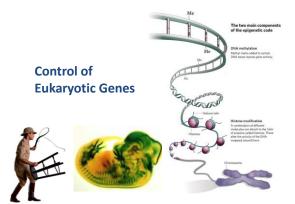
RNA

RNA

B-Galactosidase

Permease

Inactive (inducer)


(b) Lactose present, repressor inactive, operon on

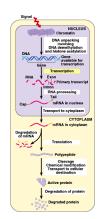
Lactose is allosteric regulator of repressor protein

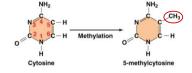
Operon summary

- Repressible operon (Trp Operon)
 - usually functions in anabolic pathways • synthesizing end products
 - when end product is present in excess, cell allocates resources to other uses
- Inducible operon (Lac Operon)
 - usually functions in catabolic pathways,
 - <u>digesting</u> nutrients to simpler molecules
 - produce enzymes only when nutrient is available
 - · cell avoids making proteins that have nothing to do, cell allocates resources to other uses

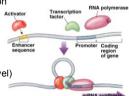
The BIG Questions.

- · How are genes turned on & off in eukaryotes?
- · How do cells with the same genes differentiate to perform completely different, specialized functions?




Points of control

- The control of gene expression can occur at any step in the pathway from gene to functional protein
 - 1. packing/unpacking DNA
 - 2. transcription
 - 3. mRNA processing
 - 4. mRNA transport
 - 5. translation
 - 6. protein processing
 - 7. protein degradation

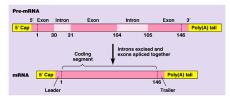

DNA methylation

- Methylation of DNA blocks transcription factors
 - no transcription
- → genes turned off
- attachment of methyl groups (-CH₃) to cytosine
 - C = cytosine
- nearly permanent inactivation of genes
 - ex. inactivated mammalian X chromosome = Barr body



Transcription initiation

- · Control regions on DNA
 - promoter
 - nearby control sequence on DNA
 - binding of RNA polymerase & transcription factors
 - "base" rate of transcription
 - enhancer
 - distant control sequences on DNA
 - binding of activator proteins
 - "enhanced" rate (high level) of transcription



Transcription complex

Regulation of mRNA degradation

- 5' cap and Poly-A Tail
- Life span of mRNA determines amount of protein synthesis
 - mRNA can last from hours to weeks

RNA interference

- Small interfering RNAs (siRNA)
 - short segments of RNA (21-28 bases)
 - · bind to mRNA
 - create sections of double-stranded mRNA
 - "death" tag for mRNA
 - triggers degradation of mRNA
 - cause gene "silencing"
 - post-transcriptional control
 - turns off gene = no protein produced

<u>siRNA</u>

1990s | 2006 **RNA** interference Craig Mello **Andrew Fire U** Mass Stanford **Nobel Prize** "for their discovery of RNA interference gene silencing by double-stranded RNA" Control of translation · Block initiation of translation stage - regulatory proteins attach to 5' end of mRNA • prevent attachment of ribosomal subunits & initiator tRNA • block translation of mRNA to protein Protein processing & degradation · Protein processing - folding, cleaving, adding sugar groups, targeting for transport Protein degradation

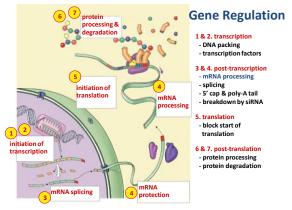
<u>ubiquitin</u> tagging<u>proteasome</u> degradation

1980s | 2004

Ubiquitin

- · "Death tag"
 - mark unwanted proteins with a label
 - 76 amino acid polypeptide, ubiquitin
 - labeled proteins are broken down rapidly in "waste disposers"
 - proteasomes

Proteasome


- · Protein-degrading "machine"
 - cell's waste disposer
 - breaks down any proteins into 7-9 amino acid fragments

