

• Flow of genetic information in a cell

 How do we move information from DNA to proteins?

Transcription

- transcribed DNA strand = template strand
- untranscribed DNA strand = coding strand
- same sequence as RNA
 synthesis of complementary RNA strand
- synthesis of complementary RNA si

Which gene is read?

- · Promoter region
 - binding site before beginning of gene
 - TATA box binding site
 - binding site for RNA polymerase
 - & transcription factors
- Enhancer region
 - binding site far upstream of gene
 - turns transcription on HIGH

 Eukary 	otic promoters Promoter
5	TATAAAA
	TATA box Start point Template DNA strand
	Transcription factor
5' 3'	

Transcription Factors

- Initiation complex
 - transcription factors bind to promoter region
 - suite of proteins which bind to DNA
 - turn on or off transcription
 - trigger the binding of RNA polymerase to DNA

Eukaryotic genes have junk!

- Eukaryotic genes are not continuous
 - exons = the real gene
 - expressed / coding DNA
 - introns = the junk
 - inbetween sequence

mRNA splicing

- Post-transcriptional processing
 - eukaryotic mRNA needs work after transcription
 - primary transcript = pre-mRNA
 - mRNA splicing
 - edit out introns
 - make mature mRNA transcript

Splicing must be accurate

- No room for mistakes!
 - a single base added or lost throws off the reading frame

RNA splicing enzymes

Alternative splicing

- Alternative mRNAs produced from same gene
 - when is an intron not an intron...
 - different segments treated as exons

More post-transcriptional processing

- · Need to protect mRNA on its trip from nucleus to cytoplasm
 - enzymes in cytoplasm attack mRNA
 - protect the ends of the molecule
 - add 5' GTP/Methylated cap
 - add poly-A tail

amino acid language

How does mRNA code for proteins?

mRNA codes for proteins in triplets

Cracking the code

1960 | 1968 Nirenberg & Khorana

Crick

– determined 3-letter (triplet) <u>codon</u> system

WHYDIDTHEREDBATEATTHEFATRAT

- Nirenberg (47) & Khorana (17)
 - determined mRNA-amino acid match
 - added fabricated mRNA to test tube of ribosomes, tRNA & amino acids
 - created artificial UUUUU... mRNA
 - found that UUU coded for phenylalanine

The code

- Code for <u>ALL</u> life!
 strongest support for a
- common origin for all life Code is redundant – several codons for each
- amino acid – 3rd base "wobble"
 - Start codon
 AUG
 methionine
 Stop codons

UGA, UAA, UAG

How are the codons matched to amino acids?

Ribosomes

- Facilitate coupling of tRNA anticodon to mRNA codon
- Structure
 - ribosomal RNA (rRNA) & proteins
 - 2 subunits
 - large
 - small

Ribosomes

• A site (aminoacyl-tRNA site)

 holds tRNA carrying next amino acid to be added to chain

- P site (peptidyl-tRNA site)
 - holds tRNA carrying growing polypeptide chain
- E site (exit site)
 - empty tRNA leaves ribosome from exit site

Building a polypeptide

- Initiation
 - brings together mRNA, ribosome subunits, initiator tRNA
- Elongation

 adding amino acids based on codon
- sequence
- Termination

 end codon

