

What do genes code for?

- How does DNA code for cells & bodies?
 - how are cells and bodies made from the instructions in DNA

2007-2008

RNA

ribose sugar

- N-bases
 - uracil instead of thymine
 - U : A
 - C : G
- single stranded
- Iots of RNAs
 mRNA, tRNA, rRNA, siRNA:
 transcription
 RNA

Base pair Base p

Transcription

Matching bases of DNA & RNA

Which gene is read?

Promoter region

- binding site before beginning of gene
- TATA box binding site
- binding site for RNA polymerase
- & transcription factors
- Enhancer region
 - binding site far upstream of gene
 - turns transcription on HIGH

Transcription Factors

- Initiation complex
 - transcription factors bind to promoter region
 - suite of proteins which bind to DNA
 - turn on or off transcription
 - trigger the binding of RNA polymerase to DNA

Eukaryotic genes have junk!

- Eukaryotic genes are not continuous
 - exons = the real gene
 - expressed / coding DNA
 - introns = the junk
 - inbetween sequence

mRNA splicing

- Post-transcriptional processing
 - eukaryotic mRNA needs work after transcription
 - primary transcript = pre-mRNA
 - mRNA splicing
 - edit out introns
 - make mature mRNA transcript

	intron = noncoding (inbetween) sec	uence ~10.000 base
eukaryotic DNA		
	exon = coding (expressed) sequence	pre-mRNA
primary mRNA transcript		
	nature mRNA	~1,000 bas
	transcript	spliced mRNA

Splicing must be accurate

- No room for mistakes!
 - a single base added or lost throws off the reading frame

RNA splicing enzymes

Alternative splicing

- Alternative mRNAs produced from same gene
 - when is an intron not an intron...
 - different segments treated as exons

More post-transcriptional processing

- Need to protect mRNA on its trip from nucleus to cytoplasm
 - enzymes in cytoplasm attack mRNA
 - protect the ends of the molecule
 - add 5' GTP/Methylated cap
 - add poly-A tail

How does mRNA code for proteins?

mRNA codes for proteins in triplets

Cracking the code

1960 | 1968 Nirenberg & Khorana

Crick

determined 3-letter (triplet) <u>codon</u> system

WHYDIDTHEREDBATEATTHEFATRAT

- Nirenberg (47) & Khorana (17)
 - determined mRNA-amino acid match
 - added fabricated mRNA to test tube of ribosomes, tRNA & amino acids
 - created artificial UUUUU... mRNA
 - found that UUU coded for phenylalanine

The code

- Code for <u>ALL</u> life!
 - strongest support for a common origin for all life
- Code is redundant

 several codons for each amino acid
 - 3rd base "wobble"

Start codon
♦ AUG
 methionine
Stop codons
 UGA, UAA, UAG

	Second base						
		U	С	Α	G		
First base (5' end)	υ	UUU UUC UUA UUG	UCU UCC UCA UCG	UAU UAC UAA Step UAG Stop	UGU UGC UGA Stop	U C A G	
	с	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC His CAA CAA GIn CAG	CGU CGC CGA CGG	U C A G	e (3' end)
	A	AUU AUC IIe AUA AUG Met or	ACU ACC ACA CG	AAU AAC AAA AAG	AGU AGC AGA AGA AGG	U C A G	Third base
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAA GAG Glu	GGU GGC GGA GGG	U C A G	

How are the codons matched to amino acids?

Ribosomes

- Facilitate coupling of tRNA anticodon to mRNA codon
- Structure
 - ribosomal RNA (rRNA) & proteins
 - 2 subunits
 - largesmall

Ribosomes

- A site (aminoacyl-tRNA site)
 - holds tRNA carrying next amino acid to be added to chain
- P site (peptidyl-tRNA site)
 - holds tRNA carrying growing polypeptide chain
- E site (exit site)
 - empty tRNA leaves ribosome from exit site

Building a polypeptide

- Initiation

 brings together mRNA, ribosome subunits, initiator tRNA
 Elongation
- adding amino acids based on codon sequence
- Termination

