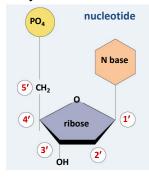
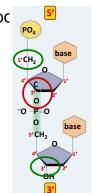


DNA Replication

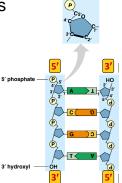

Double helix structure of DNA

"It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material." Watson & Cric

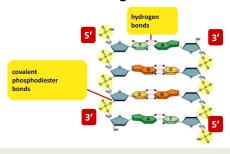
Directionality of DNA


- You need to number the carbons!
 - it matters!

	d	ı	

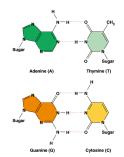

The DNA backbo

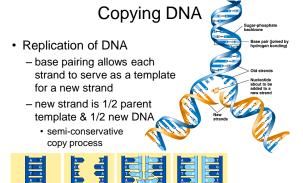
- Putting the DNA backbone together
 - refer to the 3' and 5' ends of the DNA
 - the last trailing carbon



Anti-parallel strands

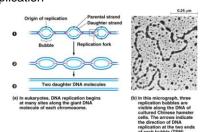
- Nucleotides in DNA backbone are bonded from phosphate to sugar between 3' & 5' carbons
 - DNA molecule has "direction"
 - complementary strand runs in opposite direction

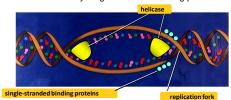

Bonding in DNA



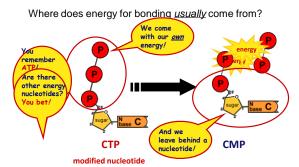
....<u>strong</u> or <u>weak</u> bonds? How do the bonds fit the mechanism for copying DNA?

Base pairing in DNA

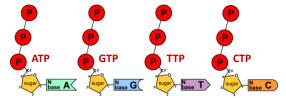

- Purines
 - adenine (A)
 - guanine (G)
- Pyrimidines
 - thymine (T)
 - cytosine (C)
- Pairing
 - -A:T
 - 2 bonds
 - C : G
 - 3 bonds


DNA Replication

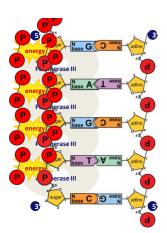
Large team of enzymes coordinates replication

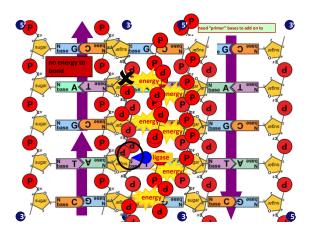

Replication: 1st step

- Unwind DNA
 - helicase enzyme
 - unwinds part of DNA helix
 - stabilized by single-stranded binding proteins

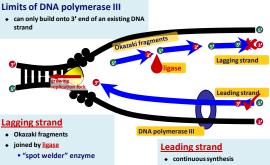

Replication: 2nd step Build daughter DNA strand add new complementary bases DNA polymerase III Polymerase III Where's the ENERGY for the bonding

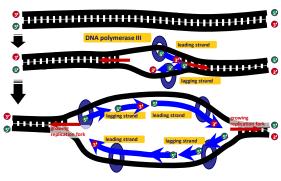
Energy of Replication


Energy of Replication

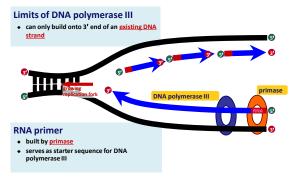

- The nucleotides arrive as nucleosides
 - DNA bases with P-P-P
 - P-P-P = energy for bonding
 - DNA bases arrive with their own energy source for bonding
 - bonded by enzyme: DNA polymerase III

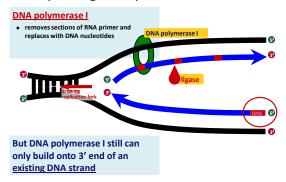
Replication

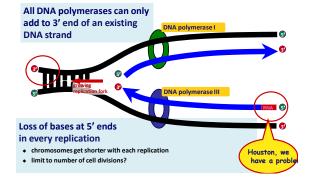

- Adding bases
 - can only add nucleotides to3' end of a growing
 - DNA strand
 - need a "starter" nucleotide to bond to
 - $-\frac{\text{strand only grows}}{5' \rightarrow 3'}$

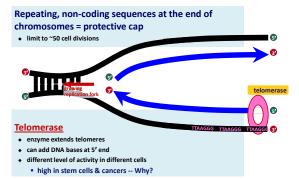


Leading & Lagging strands of DNA polymerase III nly build onto 3' end of an existing DNA

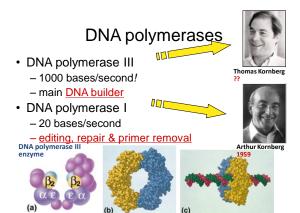

Okazaki


Replication fork / Replication bubble


Starting DNA synthesis: RNA primers


Replacing RNA primers with DNA

Chromosome erosion



Telomeres

Replication fork DNA polymerase III DNA polymerase III Okazaki fragments SSB DNA polymerase III Okazaki fragments Magging strand DNA polymerase III direction of replication

SSB = single-stranded binding proteins

Editing & proofreading DNA

- 1000 bases/second = lots of typos!
- DNA polymerase I
 - proofreads & corrects typos
 - repairs mismatched bases
 - removes abnormal bases
 - repairs damage throughout life
 - reduces error rate from1 in 10,000 to1 in 100 million bases

Thymine dimer distorts DNA molecule
A nuclease enzyme cuts
the damaged DNA strand at two points
HIT MITHE
Repair synthesis by a DNA polymerase fills the gap
JH WHICH I
☐ DNA ligase seals
The remaining nick

Fast & accurate!

- It takes <u>E. coli</u> <1 hour to copy 5 million base pairs in its single chromosome
 - divide to form 2 identical daughter cells
- Human cell copies its 6 billion bases
 - remarkably accurate
 - only ~1 error per 100 million bases
 - -~30 errors per cell cycle

What does it really look like?

_				