

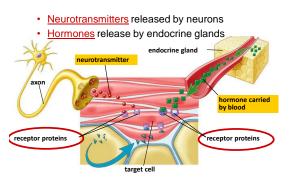
Endocrine System Hormones

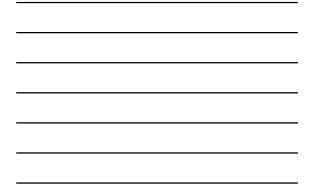
• Living with Type 1 Diabetes

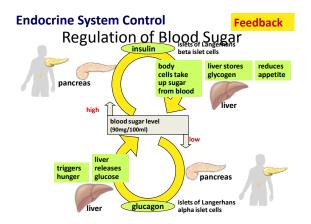
Type 1 Diabetes

- results from the autoimmune destruction of the insulin- producing beta-cells in the pancreas.
- The lack of insulin leads to increased blood and urine glucose.
- Insulin is a peptide hormone that causes cells in the liver, skeletal muscles, and fat tissue to absorb glucose from the blood.

Regulation & Communication


- · Animals rely on 2 systems for regulation
 - endocrine system
 - system of ductless glands
 - secrete chemical signals directly in
 - chemical travels to target tissue
 - target cells have receptor proteins
 slow, long-lasting response


nervous system


- system of neurons
 - transmits "electrical" signal & release neurotransmitters to
 - fast, short-lasting response

Regulation by chemical messengers

Classes of Hormones

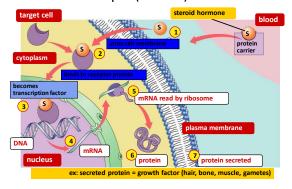
- · Protein-based hormones
 - polypeptides
 - small proteins: insulin, ADH
 - glycoproteins

• large proteins + carbohydrate: FSH, LH

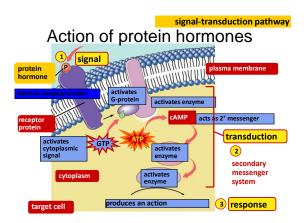
- amines

• modified amino acids: epinephrine, melatonin

insulin

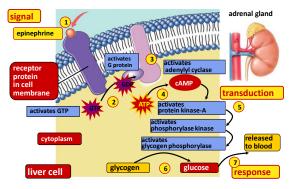

Lipid-based hormones

- steroids
 - modified cholesterol: sex hormones, aldosterone

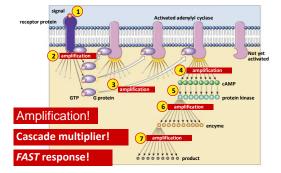

How do hormones act on target cells?

- Lipid-based hormones (Steroids)
 - hydrophobic & lipid-soluble
 - diffuse across cell membrane & enter cells
 - bind to receptor proteins in cytoplasm & nucleus
 - bind to DNA as transcription factors
- turn on genes Protein-based hormones
- - hydrophilic & not lipid soluble
 - can't diffuse across cell membrane bind to receptor proteins in cell membrane

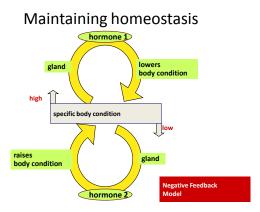
 - trigger secondary messenger pathway activate internal cellular response
 - enzyme action, uptake or secretion of molecules...



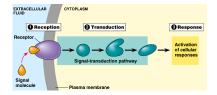
Action of lipid (steroid) hormones



Ex: Action of epinephrine (adrenaline)



Benefits of a 2° messenger system

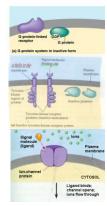


Causing a Response

- Three steps:
 - Reception
 - Transduction
 - Response

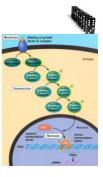
Step 1: Reception

- Signal interacts with receptor site on a membrane or in a cell (RECEPTION)

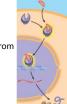

 We call this a signal a ligand.
- Ligand attachment to a receptor causes a SHAPE CHANGE in the receptor.
- Shape change starts a domino effect of chemical reactions in the cell (TRANSDUCTION) causing the RESPONSE.

Step 1: Reception

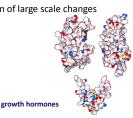
- The location of the receptor is depends on the BIOCHEMISTRY of the signal.
- Protein Signals
 - Proteins can't enter the cell membrane.
 - Bind to receptor proteins on the extracellular side of membrane
 Remember Protein signals stay on periphery
- Lipid or Steroid Signals
 - Are hydrophobic just like the membrane!
 - They "sneak by the membrane" and bind INTRACELLULAR RECEPTORS.
 - · Remember: lipids leak right into cells OR steroids slip right into cells


Receptor Types

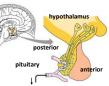
- The three main receptors that you should be familiar with are:
 - G coupled protein receptor
 - Tyrosine kinase receptors
 - Ion channel receptors
- They all do the same thing, just a little differently.
- Main Idea:
 - 1. They bind signaling molecule
 - 2. This causes a shape change.
 - 3. This "activates" a cellular response.


Step 2: Signal Transduction

- Transduction = signal processing.
 - A multistep
- Involves activating other proteins by phosphorylating them.
 - Phosphorylating = kicks them into action.
 - Protein kinases = the enzymes that do this.


Step 3: Response

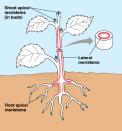
- Two main types of cellular responses:
 - 1. Activating enzymes within a cell
 - PROTEIN signals do this, why?
 - Cant get into the cell so must communicate from the outside
 - 2. Turning on/ off genes in your DNA
 - Aka "transcription factors"
 - STEROID signals do this, why?
 - They can sneak right past the membrane and bind intracellular receptors.


Regulation

- Why are hormones needed?
 - chemical messages from one body part to another
 - communication needed to coordinate whole body
 - daily homeostasis & regulation of large scale changes
 - solute levels in blood
 - glucose, Ca++, salts, etc.
 - metabolism
 - growth
 - development
 - maturationreproduction
 - reproduction

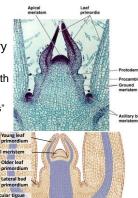
Nervous & Endocrine systems linked

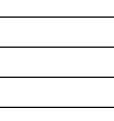
- Hypothalamus = "master nerve control center"
 - nervous system
 - receives information from nerves around body about internal conditions
 - <u>releasing hormones</u>: regulates release of hormones from pituitary
- <u>Pituitary gland</u> = "master gland"
 - endocrine system
 - secretes broad range of "tropic" hormones regulating other glands in body



Growth in Plants

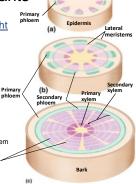
- Specific regions of growth: meristems
 - stem cells: perpetually embryonic tissue
 - regenerate new cells
 - apical shoot meristem
 - growth in length - primary growth
 - apical root meristem
 - growth in length
 - primary growth
 - · lateral meristem
 - growth in girth
 - secondary growth




Shoot growth

- Apical bud & primary growth of shoot
 - region of stem growth
 - axillary buds
 - "waiting in the wings"

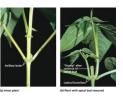
prin

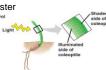


Growth in woody plants

- Woody plants grow in <u>height</u> from tip
 - primary growth
 - apical meristem
- Woody plants grow in <u>diameter</u> from sides
 - secondary growth
 - <u>lateral meristems</u>
 <u>vascular cambium</u>
 makes 2° phloem & 2° xylem
 - makes 2° phloem & 2° xy
 <u>cork cambium</u>
 makes bark
 Annual growth
 Jayers

Primar xylem


Plant hormones

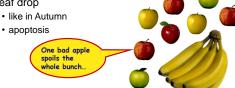

- auxin
- gibberellins
- · abscisic acid
- ethylene
- and more...

Auxin (IAA)

- Effects
 - controls cell division
 & differentiation
 - phototropism
 - growth towards light
 - asymmetrical distribution of auxin
 - cells on darker side elongate faster than cells on brighter side Control
 - apical dominance

Gibberellins

- · Family of hormones
 - over 100 different gibberellins identified
- · Effects
 - stem elongation
 - fruit growth
 - seed germination



plump grapes in grocery

stores have been treated with

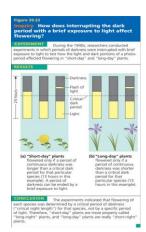
Ethylene

- · Hormone gas released by plant cells
- Effects
 - fruit ripening
 - leaf drop
 - like in Autumn

Fruit ripening

Adaptation

- hard, tart fruit protects developing seed from herbivores
- ripe, sweet, soft fruit attracts animals to disperse seed
- Mechanism
 - triggers ripening process breakdown of cell wall - softening
 - · conversion of starch to sugar sweetening
 - positive feedback system
 - · ethylene triggers ripening
 - · ripening stimulates more ethylene production



Response to Light

- Phytochromes regulate many plant responses to light
 - Helps plants detect light; keeps track of seasons; day length
- SHORT DAY PLANTS need daylight for less than a critical period to flower

(flower in late summer, fall, winter)

• LONG DAY PLANTS need daylight for longer than a certain critical period to flower (flower in late spring/early summer)

