

DNA The Genetic Material

Scientific History

- The march to understanding that DNA is the genetic material
 - T.H. Morgan (1908)
 - Frederick Griffith (1928)
 - Avery, McCarty & MacLeod (1944)
 - Erwin Chargaff (1947)
 - Hershey & Chase (1952)
 - Watson & Crick (1953)
 - Meselson & Stahl (1958)

1908 | 1933

Chromosomes related to phenotype

• T.H. Morgan's Experiment

- working with Drosophila
- associated phenotype with specific chromosome

 <u>white-eyed male had specific X</u> chromosome

1908 | 1933 Genes are on chromosomes

- Morgan's conclusions
 - genes are on chromosomes
 - but is it the <u>protein</u> or the <u>DNA</u> of the chromosomes that are the genes?
 - initially <u>proteins</u> were thought to be genetic material...
 Why?

1928 The "Transforming Principle"

Frederick Griffith's Experiment

- Streptococcus pneumonia bacteria
 was working to find cure for pneumonia
- <u>harmless live bacteria ("rough") mixed</u> with heat-killed pathogenic bacteria ("smooth") causes fatal disease in mice
- a substance passed from dead bacteria to live bacteria to change their phenotype
 - "<u>Transforming Principle</u>"

The "Transforming Principle"

<u>Transformation</u> = change in phenotype something in heat-killed bacteria could still transmit disease-causing properties

The "Transforming Principle"

Frederick Griffith's Conclusions

 a substance passed from dead bacteria to live bacteria to change their phenotype, which he called the "Transforming Principle"

1928

1944 DNA is the "Transforming Principle"

- Avery, McCarty & MacLeod's Experiments
 - purified both DNA & proteins separately from <u>Streptococcus pneumonia bacteria</u>
 which will <u>transform</u> non-pathogenic bacteria?
 - <u>injected protein into bacteria</u>
 <u>no effect</u>
 - injected DNA into bacteria
 transformed harmless bacteria into virulent bacteria

1944 | ??!! Avery, McCarty & MacLeod

Conclusion

 – <u>first experimental evidence that DNA was the genetic</u> material

Oswald Avery

- Maclyn McCarty
- Colin MacLeod

1952 | 1969 Confirmation of DNA

Hershey & Chase's Experiment

<u>grew bacteroiophage viruses</u>

in 2 media, radioactively labeled

- ³⁵S in their proteins
- ³²P in their DNA
- infected bacteria with labeled phages

with either:

1952 | 1969

Blender experiment Conclusions

- · Radioactive phage & bacteria in blender
 - ³⁵S phage
 - · radioactive proteins stayed in supernatant
 - therefore <u>viral protein did NOT enter bacteria</u>
 - ³²P phage
 - radioactive DNA stayed in pellet
 - therefore viral DNA did enter bacteria
 - Confirmed DNA is "transforming factor"

Martha Chase

Alfred Hershey

Chargaff's Conclusions

DNA composition:

- varies from species to species
- all 4 bases not in equal quantity
- bases present in characteristic ratio, where A=T, C=G
 - humans:
- A = 30.9% T = 29.4%
- G = 19.9% C = 19.8%

1947

Erwin Chargaff

1953 | 1962 Structure of DNA

- Watson & Crick's Conclusions
 - developed double helix model of DNA
 - other leading scientists working on question:
 Rosalind Franklin
 - Maurice Wilkins
 - Linus Pauling

Watson and Crick

Rosalind Franklin (1920-1958)

But how is DNA copy e. Replication of DNA b. asse pairing suggests that it will allow each side to serve as a template for a new strand Will be the section of the s

Models of DNA Replication

1958 Semiconservative replication

- Meselson & Stahl's Experiment
 - $\frac{\text{label "parent" nucleotides in DNA strands with}}{\text{heavy nitrogen} = \frac{15}{N}}$
 - label new nucleotides with lighter isotope = 14N

Meselson & Stahl

Conclusions

Franklin Stahl

Scientific History

- March to understanding that DNA is the genetic material
 T.H. Morgan (1908)
 - genes are on chromosomes
 - Frederick Griffith (1928)
 - <u>a transforming factor can change phenotype</u>
 - Avery, McCarty & MacLeod (1944)
 transforming factor is DNA
 - Erwin Chargaff (1947)
 - <u>Chargaff rules: A = T, C = G</u>
 - Hershey & Chase (1952)
 <u>confirmation that DNA is genetic material</u>
 - Watson & Crick (1953)
 determined double helix structure of DNA
 - Meselson & Stahl (1958)
 - semi-conservative replication