

DNA The Genetic Material

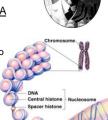
Scientific History

- The march to understanding that DNA is the genetic material
 - T.H. Morgan (1908)
 - Frederick Griffith (1928)
 - Avery, McCarty & MacLeod (1944)
 - Erwin Chargaff (1947)
 - Hershey & Chase (1952)
 - Watson & Crick (1953)
 - Meselson & Stahl (1958)

1908 | 1933

Chromosomes related to phenotype

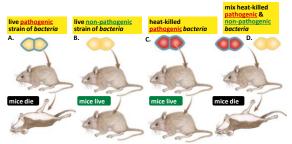
- T.H. Morgan's Experiment
 - working with Drosophila
 - <u>associated phenotype with</u> <u>specific chromosome</u>
 - white-eyed male had specific X
 chromosome



1908 | 1933

Genes are on chromosomes

- · Morgan's conclusions
 - genes are on chromosomes
 - but is it the <u>protein</u> or the <u>DNA</u> of the chromosomes that are the genes?
 - initially proteins were thought to be genetic material... Why?



1928 The "Transforming Principle"

- · Frederick Griffith's Experiment
 - Streptococcus pneumonia bacteria
 was working to find cure for pneumonia
 - <u>harmless live bacteria ("rough") mixed</u> with heat-killed pathogenic bacteria ("smooth") causes fatal disease in mice
 - a substance passed from dead bacteria to live bacteria to change their phenotype
 - "Transforming Principle"

The "Transforming Principle"

<u>Transformation</u> = change in phenotype something in heat-killed bacteria could still transmit disease-causing properties

1928

The "Transforming Principle"

· Frederick Griffith's Conclusions

- a substance passed from dead bacteria to live bacteria to change their phenotype, which he called the "Transforming Principle"

1944 DNA is the "Transforming Principle"

- · Avery, McCarty & MacLeod's Experiments
 - purified both DNA & proteins separately from Streptococcus pneumonia bacteria • which will transform non-pathogenic bacteria?
 - injected protein into bacteria
 - no effect
 - injected DNA into bacteria transformed harmless bacteria into virulent bacteria

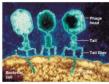
1944 | ??!!

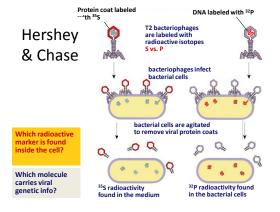
Avery, McCarty & MacLeod

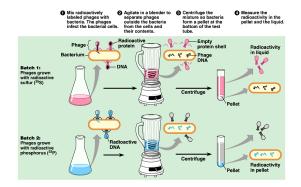
- Conclusion
 - first experimental evidence that DNA was the genetic material

Oswald Avery

1952 | 1969 Confirmation of DNA


· Hershey & Chase's Experiment


- grew bacteroiophage viruses in 2 media, radioactively labeled with either:


Hershey

- <u>35S in their proteins</u>
- ³²P in their DNA
- infected bacteria with labeled phages

Blender experiment Conclusions

- · Radioactive phage & bacteria in blender
 - ³⁵S phage
 - · radioactive proteins stayed in supernatant
 - therefore viral protein did NOT enter bacteria
 - ³²P phage
 - radioactive DNA stayed in pellet
 - therefore viral DNA did enter bacteria
 - Confirmed DNA is "transforming factor"

Martha Chase

Alfred Hershey

Chargaff's Conclusions

DNA composition:

- varies from species to species
- all 4 bases not in equal quantity
- bases present in characteristic ratio, where A=T, C=G
 - humans:
- A = 30.9%
- T = 29.4% G = 19.9%
- C = 19.8%

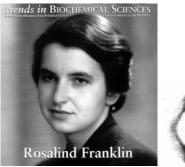
1947

Erwin Chargaff

1953 | 1962

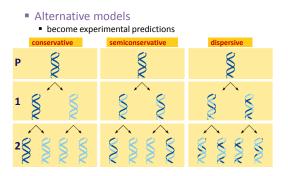
Structure of DNA

- Watson & Crick's Conclusions
 - developed double helix model of DNA
 - other leading scientists working on question:
 - Rosalind Franklin
 - Maurice Wilkins
 - Linus Pauling



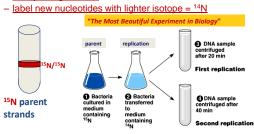
Watson and Crick

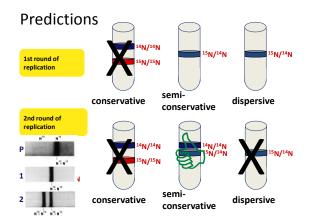
Rosalind Franklin (1920-1958)



But how is DNA copies Replication of DNA base pairing suggests that it will allow each side to serve as a template for a new strand

"It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material." — Watson & Crick


Models of DNA Replication


1958


Semiconservative replication

- Meselson & Stahl's Experiment
 - <u>label "parent" nucleotides in DNA strands with</u> <u>heavy nitrogen = ¹⁵N</u>

Meselson & Stahl

Conclusions

DNA replication is semi-conservative

Scientific History

- March to understanding that DNA is the genetic material
 T.H. Morgan (1908)
 - genes are on chromosomes
 - Frederick Griffith (1928)
 - <u>a transforming factor can change phenotype</u>
 - Avery, McCarty & MacLeod (1944)
 - transforming factor is DNA
 - Erwin Chargaff (1947)
 - <u>Chargaff rules: A = T, C = G</u>
 - Hershey & Chase (1952)
 <u>confirmation that DNA is genetic material</u>
 - Watson & Crick (1953)
 - determined double helix structure of DNA
 - Meselson & Stahl (1958)
 <u>semi-conservative replication</u>