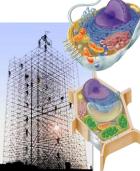
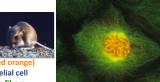


The Cell Cycle: Cell Growth, Cell Division

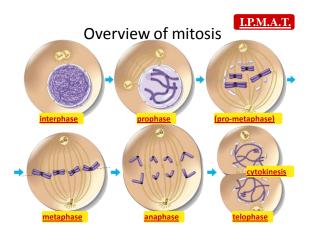
Why do cells divide?

- For reproduction
 - asexual reproduction
 one-celled organisms
- For growth
 - from fertilized egg to multi-celled organism
- For repair & renewal
 - replace cells that die from normal wear & tear or from injury



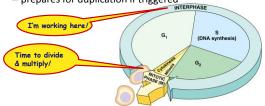

Making new cells

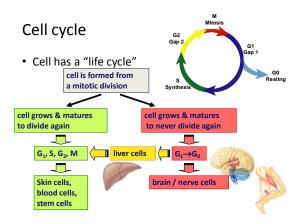
- <u>Nucleus</u> – chromosomes
 - DNA
- <u>Cytoskeleton</u>
 - centrioles
 - in animals
 - microtubule spindle fibers



Getting the right stuff

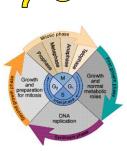
- What is passed on to daughter cells?
 - exact copy of genetic material = DNA
 mitosis
 - organelles, cytoplasm, cell membrane, enzymes
 - cytokinesis

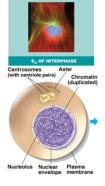



chromosomes (stained orange in kangaroo rat epithelial cell →notice cytoskeleton fibers

Interphase

- 90% of cell life cycle
 - cell doing its "everyday job"
 - produce RNA, synthesize proteins/enzymes
 prepares for duplication if triggered

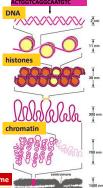



Interphase

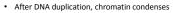
- Divided into 3 phases:
 G1 = 1st Gap (Growth)
 cell doing its "everyday job"
 cell grows
 - DNA Synthesis
 - copies chromosomes
 - G2 = 2nd Gap (Growth)
 - prepares for division
 - cell grows (more)
 - produces organelles, proteins, membranes

Interphase

- Nucleus well-defined
 - DNA loosely packed in long chromatin fibers
- Prepares for mitosis
 - replicates chromosomeDNA & proteins
 - produces proteins & organelles


S phase: Copying / Replicating DNA

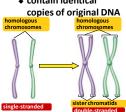
- Synthesis phase of Interphase
 - dividing cell replicates DNA
 - must separate DNA copies correctly to 2 daughter cells
 - human cell duplicates ~3 meters DNA
 each daughter cell gets complete
 - identical copy
 - error rate = ~1 per 100 million bases
 3 billion base pairs in mammalian genome
 - ~30 errors per cell cycle
 - » mutations (to somatic (body) cells)

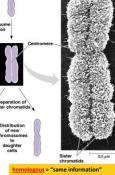


Organizing DNA

- DNA is organized in chromosomes
 - double helix DNA molecule
 - wrapped around histone proteins
 like thread on spools
 - DNA-protein complex = chromatin
 - organized into long thin fiber
 condensed further during mitosis
 - double stranded chromosom
 - duplicated mitotic chromosome

Copying DNA & packaging it...


double-stranded mitotic human chromosomes

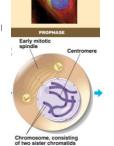


Mitotic Chromosome

Chrom

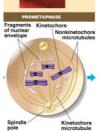
- Duplicated chromosome
 - 2 sister chromatids
 - narrow at <u>centromeres</u> contain identical

Mitosis


- Dividing cell's DNA between 2 daughter nuclei
- 4 phases
 - prophase
 - metaphase
 - anaphase
 - telophase

G.

Prophase


- Chromatin condenses
 - visible chromosomes
 chromatids
- Centrioles move to opposite poles of cell
 animal cell
- Protein fibers cross cell to form mitotic spindle
 - microtubules
 - actin, myosin
- coordinates movement of chromosomes Nucleolus disappears
- Nucleorus disappears
 Nuclear membrane breaks down

Transition to Metaphase

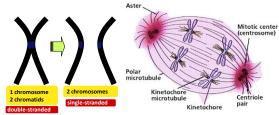
- Prometaphase
 - spindle fibers attach to centromeres
 - creating kinetochores
 microtubules attach at kinetochores
 - connect centromeres to centrioles
 - chromosomes begin moving

Metaphase

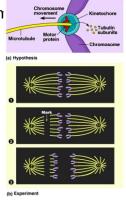
- Chromosomes align along middle of cell
 - metaphase plate
 meta = middle
 - spindle fibers coordinate movement
 - helps to ensure chromosomes separate properly
 - so each new nucleus receives only 1 copy of each chromosome

Anaphase

- Sister chromatids separate at kinetochores
 - move to opposite poles
 - pulled at centromeres
 - pulled by motor proteins "walking"along microtubules
 - actin, myosin
 - increased production of ATP by mitochondria
- Poles move farther apart


 polar microtubules lengthen

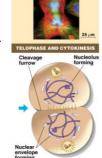
Separation of chromatids


• In anaphase, proteins holding together sister chromatids are inactivated

- separate to become individual chromosomes

Chromosome n

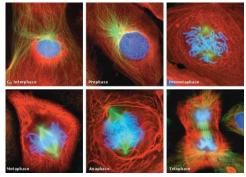
- Kinetochores use motor proteins that "walk" chromosome along attached microtubule
 - microtubule shortens by dismantling at kinetochore (chromosome) end


Telophase

- Chromosomes arrive at opposite poles
 - daughter nuclei form
 - nucleoli form
 - chromosomes disperse
 no longer visible under light microscope
- Spindle fibers disperse
- Cytokinesis begins
 - cell division

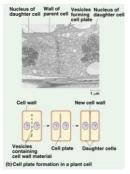
Cytokinesis

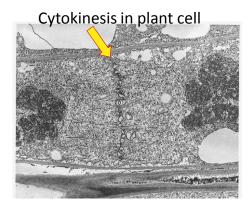
- Animals
 - constriction belt of actin microfilaments around equator of cell
 - cleavage furrow forms
 - splits cell in two
 - like tightening a draw string

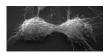

Cytokinesis in Animals

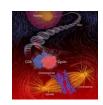
Da

Mitosis in animal cells




Cytokinesis in Plants


Plants


- cell plate forms
 - vesicles line up at equator

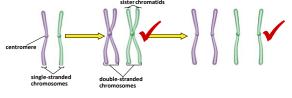
 derived from Golgi
 - vesicles fuse to form 2 cell membranes
- new cell wall laid down between membranes
 - new cell wall fuses with existing cell wall

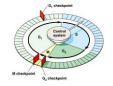
Regulation of Cell Division

Coordination of cell division

- A multicellular organism needs to coordinate cell division across different tissues & organs
 - critical for normal growth, development & maintenance
 - coordinate timing of
 - cell division
 - coordinate rates of cell division
 - not all cells can have the same cell cycle

Frequency of cell division


- Frequency of cell division varies by cell type
 - embryo
 - cell cycle < 20 minute
 - skin cells
 - divide frequently throughout life
 12-24 hours cycle
 - liver cells
 - retain ability to divide, but keep it in reserve
 - divide once every year or two
 - mature nerve cells
 - do not divide at all after maturity
 - permanently in G0


Overview of Cell Cycle Control

- Two irreversible points in cell cycle
 - replication of genetic material
 - separation of sister chromatids
- Checkpoints
 - process is assessed & possibly halted

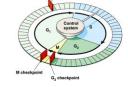
Checkpoint control system

- Checkpoints
 - cell cycle controlled by STOP & GO chemical signals at critical points
 - signals indicate if key cellular processes have been completed correctly

Checkpoint control system

G₂ / M che

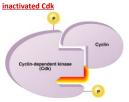
- 3 major checkpoints:
 - G1/S
 - can DNA synthesis begin?
 - G2/M
 - has DNA synthesis been completed
 - correctly?
 - commitment to mitosis
 spindle checkpoint
 - are all chromosomes attached to spindle?
 - spindle?can sister chromatids separate correctly?


Spindle checkpoi

G1/S checkpoint

- G1/S checkpoint is most critical
 - primary decision point"restriction point"
 - if cell receives "GO" signal, it divides
 - internal signals: cell growth (size), cell nutrition
 external signals: "growth factors"
 - if cell does not receive signal, it exits cycle & switches to G0 phase

• non-dividing, working state

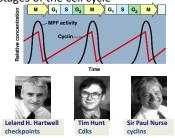


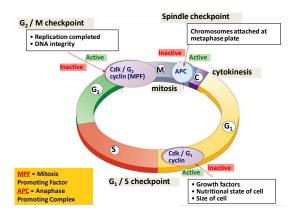
Activation of cell division

- · How do cells know when to divide?
 - cell communication signals
 - chemical signals in cytoplasm give cue
 - signals usually mean proteins
 - activators
 inhibitors

Cell cycle signals

- Cell cycle controls
 - cyclins
 - regulatory proteins
 - levels cycle in the cell
 - Cdks
 - cyclin-dependent kinases
 - phosphorylates cellular proteins
 - activates or inactivates proteins
 - Cdk-cyclin complex
 - triggers passage through different stages of cell cycle

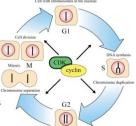



- activated Cdk

1970s-80s | 2001

Cyclins & Cdks

• Interaction of Cdk's & different cyclins triggers the stages of the cell cycle

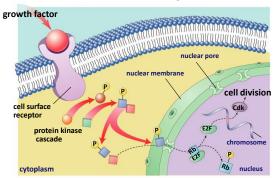


Cyclin & Cyclin-dependent kinases

• CDKs & cyclin drive cell from one phase to next in cell cycle

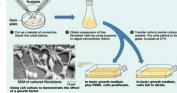
- proper regulation of cell cycle is so key to life that the genes for these regulatory proteins have been highly conserved through evolution
- the genes are basically the same in yeast, insects, plants & animals (including humans)

The Cell Cycle Cell with chromosomes in the nucleus



External signals

- Growth factors
 - coordination between cells
 - protein signals released by body cells that stimulate other cells to divide
 - · density-dependent inhibition
 - crowded cells stop dividing
 each cell binds a bit of growth factor
 - » not enough activator left to trigger division in any one cell
 • anchorage dependence
 - to divide cells must be attached to a substrate
 - » "touch sensor" receptors


(2323)
\downarrow
↓
(a) Normal mammalian cells

Growth factor signals

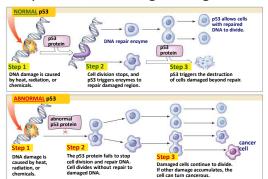
Example of a Growth Factor

- Platelet Derived Growth Factor (PDGF)
 - made by platelets in blood clots
 - binding of PDGF to cell receptors stimulates cell division in connective tissue
 - heal wounds

Growth Factors and Cancer

• Growth factors can create cancers

- proto-oncogenes
 - normally activates cell division
 - growth factor genes
 - become oncogenes (cancer-causing) when mutated
 - if switched "ON" can cause cancer • example: RAS (activates cyclins)
- tumor-suppressor genes
 - · normally inhibits cell division
 - if switched "OFF" can cause cancer
 - example: p53



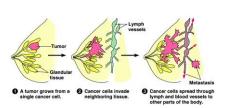
- Cancer is essentially a failure
- of cell division control
- unrestrained, uncontrolled cell growth
- What control is lost?
 - lose checkpoint stops
 - gene p53 plays a key role in G1/S restriction point
 - p53 protein halts cell division if it detects damaged DNA options: stimulates repair enzymes to fix DNA

p53 is the . Cell Cycle Enforcer

» forces cell into G0 resting stage » keeps cell in G1 arrest » causes apoptosis of damaged cell

· cancers have to shut down p53 activity

p53 — master regulator gene



Development of Cancer

- Cancer develops only after a cell experiences ~6 key
 - mutations ("hits")
 - unlimited growth
 - turn on growth promoter genes - ignore checkpoints
 - turn off tumor suppressor genes (p53) escape apoptosis
 - turn off suicide genes
 - immortality = unlimited divisions • turn on chromosome maintenance genes
 - promotes blood vessel growth · turn on blood vessel growth genes
 - overcome anchor & density dependence • turn off touch-sensor gene
 - What causes these "hits"?
 - Mutations in cells can be triggered by • UV radiation
 • cigarette smoke

 - chemical exposure radiation exposure
 - heat

 pollution age genetics

Tumors

- Mass of abnormal cells
 - Benign tumor
 - abnormal cells remain at original site as a lump
 - most do not cause serious problems &
 - can be removed by surgery
 - Malignant tumor
 - cells leave original site
 - lose attachment to nearby cells
 - carried by blood & lymph system to other tissues
 - start more tumors = metastasis
 - · impair functions of organs throughout body

Traditional treatments for cancers

- Treatments target rapidly dividing cells
 - high-energy radiation
 - kills rapidly dividing cells
 - chemotherapy
 - stop DNA replication
 - stop mitosis & cytokinesis
 - stop blood vessel growth

New "miracle drugs"

- Drugs targeting proteins (enzymes) found only in cancer cells
 - Gleevec
 - treatment for adult leukemia (CML) & stomach cancer (GIST)
 - 1st successful drug targeting only cancer cells

