The Cell Cycle:
Cell Growth, Cell Division

Why do cells divide?

- **For reproduction**
 - asexual reproduction
 - one-celled organisms
- **For growth**
 - from fertilized egg to multi-celled organism
- **For repair & renewal**
 - replace cells that die from normal wear & tear or from injury

Making new cells

- **Nucleus**
 - chromosomes
 - DNA
- **Cytoskeleton**
 - centrioles
 - in animals
 - microtubule spindle fibers
Getting the right stuff

• What is passed on to daughter cells?
 – exact copy of genetic material = DNA
 • mitosis
 – organelles, cytoplasm, cell membrane, enzymes
 • cytokinesis

chromosomes (stained orange)
in kangaroo rat epithelial cell
→ notice cytoskeleton fibers

Overview of mitosis

Interphase

• 90% of cell life cycle
 – cell doing its “everyday job”
 • produce RNA, synthesize proteins/enzymes
 – prepares for duplication if triggered
Cell cycle

- Cell has a “life cycle”
 - Cell is formed from a mitotic division
 - cell grows & matures to divide again
 - cell grows & matures to never divide again
 - G0, S, G2, M

- Liver cells
- Brain / nerve cells
- Skin cells, blood cells, stem cells

Interphase

- Divided into 3 phases:
 - G1 = 1st Gap (Growth)
 - Cell doing its “everyday job”
 - DNA Synthesis
 - copies chromosomes
 - S = DNA Synthesis
 - copies chromosomes
 - G2 = 2nd Gap (Growth)
 - prepares for division
 - cell grows (more)
 - produces organelles, proteins, membranes

- G0

Interphase

- Nucleus well-defined
 - DNA loosely packed in long chromatin fibers
- Prepares for mitosis
 - replicates chromosome
 - DNA & proteins
 - produces proteins & organelles
S phase: Copying / Replicating DNA

- **Synthesis phase of Interphase**
 - dividing cell replicates DNA
 - must separate DNA copies correctly to 2 daughter cells
 - human cell duplicates ~3 meters DNA
 - each daughter cell gets complete identical copy
 - error rate = ~1 per 100 million bases
 - ~3 billion base pairs in mammalian genome
 - ~30 errors per cell cycle
 - mutations (to somatic (body) cells)

Organizing DNA

- DNA is organized in chromosomes
 - double helix DNA molecule
 - wrapped around histone proteins
 - like thread on spools
 - DNA-protein complex = chromatin
 - organized into long thin fiber
 - condensed further during mitosis

Copying DNA & packaging it...

- After DNA duplication, chromatin condenses
 - coiling & folding to make a smaller package
Mitotic Chromosome

- **Duplicated chromosome**
 - 2 *sister chromatids*
 - narrow at *centromeres*
 - contain identical copies of original DNA

- *homologous chromosomes*

- *single-stranded*

- *double-stranded*

Mitosis

- Dividing cell's DNA between 2 daughter nuclei
- 4 phases
 - prophase
 - metaphase
 - anaphase
 - telophase
Prophase

- Chromatin condenses
 - visible chromosomes
 - chromatids
- Centrioles move to opposite poles of cell
 - animal cell
- Protein fibers cross cell to form mitotic spindle
 - microtubules
 - actin, myosin
 - coordinates movement of chromosomes
- Nucleolus disappears
- Nuclear membrane breaks down

Transition to Metaphase

- Prometaphase
 - spindle fibers attach to centromeres
 - creating kinetochores
 - microtubules attach at kinetochores
 - connect centromeres to centrioles
 - chromosomes begin moving

Metaphase

- Chromosomes align along middle of cell
 - metaphase plate
 - meta = middle
 - spindle fibers coordinate movement
 - helps to ensure chromosomes separate properly
 - so each new nucleus receives only 1 copy of each chromosome
Anaphase

- Sister chromatids separate at kinetochores
 - move to opposite poles
 - pulled at centromeres
 - pulled by motor proteins "walking" along microtubules
 - actin, myosin
 - increased production of ATP by mitochondria
- Poles move farther apart
 - polar microtubules lengthen

Separation of chromatids

- In anaphase, proteins holding together sister chromatids are inactivated
 - separate to become individual chromosomes

Chromosome movement

- Kinetochores use motor proteins that "walk" chromosome along attached microtubule
 - microtubule shortens by dismantling at kinetochore (chromosome) end
Telophase

- Chromosomes arrive at opposite poles
 - daughter nuclei form
 - nucleoli form
 - chromosomes disperse
 - no longer visible under light microscope
- Spindle fibers disperse
- Cytokinesis begins
 - cell division

Cytokinesis

- Animals
 - constriction belt of actin microfilaments around equator of cell
 - cleavage furrow forms
 - splits cell in two
 - like tightening a draw string

Cytokinesis in Animals
Mitosis in animal cells

Cytokinesis in Plants

• Plants
 — cell plate forms
 • vesicles line up at equator
 — derived from Golgi
 • vesicles fuse to form 2 cell membranes
 — new cell wall laid down between membranes
 • new cell wall fuses with existing cell wall

Cytokinesis in plant cell
Regulation of Cell Division

Coordination of cell division

• A multicellular organism needs to coordinate cell division across different tissues & organs
 – critical for normal growth, development & maintenance
 • coordinate timing of cell division
 • coordinate rates of cell division
 • not all cells can have the same cell cycle

Frequency of cell division

• Frequency of cell division varies by cell type
 – embryo
 • cell cycle < 20 minute
 – skin cells
 • divide frequently throughout life
 • 12-24 hours cycle
 – liver cells
 • retain ability to divide, but keep it in reserve
 • divide once every year or two
 – mature nerve cells
 • do not divide at all after maturity
 • permanently in G0
Overview of Cell Cycle Control

- Two irreversible points in cell cycle
 - replication of genetic material
 - separation of sister chromatids
- Checkpoints
 - process is assessed & possibly halted

![Diagram of cell cycle checkpoints](image)

Checkpoint control system

- Checkpoints
 - cell cycle controlled by STOP & GO chemical signals at critical points
 - signals indicate if key cellular processes have been completed correctly

![Diagram of checkpoint control system](image)

Checkpoint control system

- 3 major checkpoints:
 - G1/S
 - can DNA synthesis begin?
 - G2/M
 - has DNA synthesis been completed correctly?
 - commitment to mitosis
 - spindle checkpoint
 - are all chromosomes attached to spindle?
 - can sister chromatids separate correctly?
G1/S checkpoint

• G1/S checkpoint is most critical
 – primary decision point
 • “restriction point”
 – if cell receives “GO” signal, it divides
 • internal signals: cell growth (size), cell nutrition
 • external signals: “growth factors”
 – if cell does not receive signal, it exits cycle & switches to G0 phase
 • non-dividing, working state

Activation of cell division

• How do cells know when to divide?
 – cell communication signals
 • chemical signals in cytoplasm give cue
 • signals usually mean proteins
 – activators
 – inhibitors

Cell cycle signals

• Cell cycle controls
 – cyclins
 • regulatory proteins
 • levels cycle in the cell
 – Cdns
 • cyclin-dependent kinases
 • phosphorylates cellular proteins
 – activates or inactivates proteins
 – Cdk-cyclin complex
 • triggers passage through different stages of cell cycle
Cyclins & Cdks

- Interaction of Cdk’s & different cyclins triggers the stages of the cell cycle

1970s-80s | 2001

Cyclin & Cyclin-dependent kinases

- CDKs & cyclin drive cell from one phase to next in cell cycle
 - proper regulation of cell cycle is so key to life that the genes for these regulatory proteins have been highly conserved through evolution
 - the genes are basically the same in yeast, insects, plants & animals (including humans)
External signals

- **Growth factors**
 - coordination between cells
 - protein signals released by body cells that stimulate other cells to divide
 - density-dependent inhibition
 - crowded cells stop dividing
 - each cell binds a bit of growth factor
 » not enough activator left to trigger division in any one cell
 - anchorage dependence
 - to divide cells must be attached to a substrate
 » "touch sensor" receptors

Growth factor signals

Example of a Growth Factor

- **Platelet Derived Growth Factor (PDGF)**
 - made by platelets in blood clots
 - binding of PDGF to cell receptors stimulates cell division in connective tissue
 - heal wounds
Growth Factors and Cancer

- Growth factors can create cancers
 - proto-oncogenes
 - normally activates cell division
 - become oncogenes (cancer-causing) when mutated
 - if switched "ON" can cause cancer
 - example: RAS (activates cyclins)
 - tumor-suppressor genes
 - normally inhibits cell division
 - if switched "OFF" can cause cancer
 - example: p53

Cancer & Cell Growth

- Cancer is essentially a failure of cell division control
 - unrestrained, uncontrolled cell growth

- What control is lost?
 - lose checkpoint stops
 - gene p53 plays a key role in G1/S restriction point
 - p53 protein halts cell division if it detects damaged DNA
 - options:
 - stimulates repair enzymes to fix DNA
 - forces cell into G0 resting stage
 - keeps cell in G1 arrest
 - causes apoptosis of damaged cell
 - cancers have to shut down p53 activity

p53 — master regulator gene

- DNA damage is caused by heat, radiation, or chemicals.
- p53 triggers the destruction of cells damaged beyond repair.
 - Damaged cells continue to divide. If further damage accumulates, the cell can turn cancerous.
Development of Cancer

• Cancer develops only after a cell experiences ~6 key mutations (“hits”)
 – unlimited growth
 • turn on growth promoter genes
 – ignore checkpoints
 • turn off tumor suppressor genes (p53)
 – escape apoptosis
 • turn off suicide genes
 – immortality = unlimited divisions
 • turn on chromosome maintenance genes
 – promotes blood vessel growth
 • turn on blood vessel growth genes
 – overcome anchor & density dependence
 • turn off touch-sensor gene

What causes these “hits”?

• Mutations in cells can be triggered by
 • UV radiation
 • chemical exposure
 • radiation exposure
 • heat
 • cigarette smoke
 • pollution
 • age
 • genetics

Tumors

• Mass of abnormal cells
 – Benign tumor
 • abnormal cells remain at original site as a lump
 • most do not cause serious problems & can be removed by surgery
 – Malignant tumor
 • cells leave original site
 – lose attachment to nearby cells
 – carried by blood & lymph system to other tissues
 – start more tumors = metastasis
 • impair functions of organs throughout body
Traditional treatments for cancers

• Treatments target rapidly dividing cells
 – high-energy radiation
 • kills rapidly dividing cells
 – chemotherapy
 • stop DNA replication
 • stop mitosis & cytokinesis
 • stop blood vessel growth

New “miracle drugs”

• Drugs targeting proteins (enzymes) found only in cancer cells
 – Gleevec
 • treatment for adult leukemia (CML)
 & stomach cancer (GIST)
 • 1st successful drug targeting only cancer cells