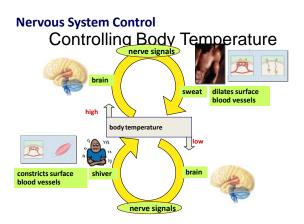
Conformers vs. Regulators

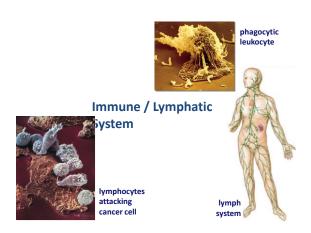
Regulating the Internal Environment

Maintaining Homeostasis

Two evolutionary paths for organisms

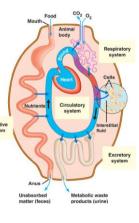
- regulate internal environment
- maintain relatively constant internal conditions
- conform to external environment
 - · allow internal conditions to fluctuate along with external changes




Homeostasis

- Keeping the balance
 - animal body needs to coordinate many systems all at once
 - temperature
 - blood sugar levels
 - energy production
 - water balance & intracellular waste disposal
 - nutrients
 - ion balance
 - cell growth
 - maintaining a "steady state" condition

Negative Feedback Loop



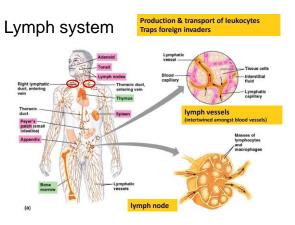
Mmmmm, What's in your

unchbox?

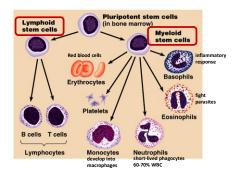
Avenues of attack

- · Points of entry
 - digestive system
 - respiratory system
 - urogenital tract
 - break in skin
- · Routes of attack - circulatory system
 - lymph system

Why an immune system?


· Attack from outside

- lots of organisms want you for lunch! - animals are a tasty nutrient- & vitamin-packed meal
- · cells are packages of macromolecules


· no cell wall traded mobility for susceptibility

- animals must defend themselves against invaders viruses

- HIV, flu, cold, measles, chicken pox, SARS
- bacteria
- pneumonia, meningitis, tuberculosis fungi
- yeast ("Athlete's foot" ...)
- protists amoeba, Lyme disease, malaria
- Attack from inside
 - defend against abnormal body cells = cancers

Development of Red & White blood cells

Lines of defense 1st line: Barriers broad, <u>external</u> defense defenses "walls & moats" skin & mucus membranes 2nd line: <u>Non-specific patrol</u> broad, internal defense "patrolling soldiers" leukocytes = phagocytic WBC macrophages 3rd line: Immune system specific, <u>acquired immunity</u> Bacteria & insects "spies" <u>inherit</u> <u>resista</u> Vertebrates Iymphocytes & antibodies B cells & T cells acquire imm

Physical & chemical - non-specific defense external barrier

1st line: External defense

- epithelial cells & mucus membranes
 - skin
 - · respiratory system
 - · digestive system
 - uro-genital tract

Lining of trachea: ciliated cells & mucus secreting cells

1st line: Chemical barriers on epithelium

- Skin & mucous membrane secretions
 - sweat
 pH 3-5
 - tears
 - washing action
 - mucus
 traps microbes
 - saliva
 - anti-bacterial = "lick your wounds"
 stomach acid
 - pH 2
 anti-microbial proteins
 lysozyme enzyme
 - lysozyme enzyme
 digests bacterial cell walls

2nd line: Internal, broad range patrol

- Innate, general defense

 rapid response
- · Patrolling cells & proteins
 - attack invaders that penetrate body's outer barriers
 - <u>leukocytes</u>
 - phagocytic white blood cells
 - complement system
 - anti-microbial proteins
 - inflammatory response

Leukocytes: Phagocytic WBCs

- Attracted by chemical signals released by damaged cells
 - enter infected tissue, engulf & ingest microbes
 <u>lvsosomes</u>
- Neutrophils
 - most abundant WBC (~70%)
 - ~ 3 day lifespan
- <u>Macrophages</u>

 "big eater", long-lived
- Natural Killer Cells
 - destroy virus-infected cells & cancer cells

cell

Phagocytes

Destroying cells gone bad!

- · Natural Killer Cells perforate cells
 - release perforin protein
 - insert into membrane of target cell
 - forms pore allowing fluid to flow into cell natural killer cell
 - cell ruptures (lysis)

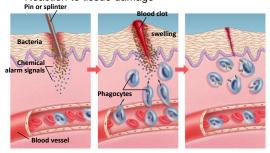
local non-specific inflammatory response – release histamines &

Inflammatory response

prostaglandins

macrophage

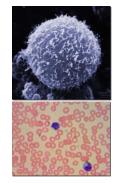
- capillaries dilate, more permeable (leaky)
 - increase blood supply


· Damage to tissue triggers

- delivers WBC, RBC, platelets, clotting factors
- fight pathogens
- clot formation
- accounts for swelling, redness & heat of inflammation & infection

Inflammatory response

· Reaction to tissue damage


Fever

- When a local response is not enough
 - systemic response to infection
 - activated macrophages release <u>interleukin-1</u>
 - triggers <u>hypothalamus in brain</u> to readjust body thermostat to raise body temperature
 - higher temperature helps defense
 - inhibits bacterial growth
 - stimulates phagocytosis
 - speeds up repair of tissues
 - causes liver & spleen to store iron, reducing blood iron levels
 bacteria need large amounts of iron to grow

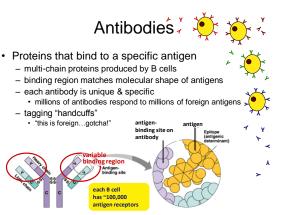
3rd line: Acquired (active) Immunity

- · Specific defense
 - lymphocytes
 - B lymphocytes (<u>B cells</u>)
 - T lymphocytes (<u>T cells</u>)
 - antibodies
 - immunoglobulins
- Responds to…
 - antigens
 - specific pathogens
 - specific toxins
 - abnormal body cells (cancer)

How are invaders recognized: Antigens

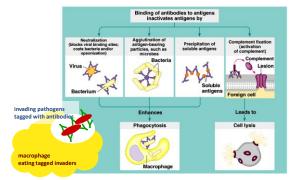
<u>Antigens</u>

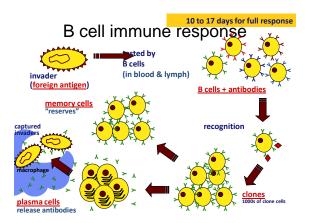
- proteins that serve as cellular name tags
 - foreign antigens cause response from WBCs
 - viruses, bacteria, protozoa, parasitic worms, fungi, toxins
 non-pathogens: pollen & transplanted tissue
- B cells & T cells respond to different antigens
 B cells recognize intact antigens
 - pathogens in blood & lymph
 - T cells recognize <u>antigen fragments</u>
 - pathogens which have already infected cells



B cells

- <u>Humoral response</u> = "in fluid"
 defense against attackers circulating freely in blood & lymph
- Specific response
 produce specific <u>antibodies</u>
- against specific <u>antigen</u> Types of B cells
- plasma cells
 - immediate production of antibodies
 - rapid response, short term release
 - memory cells
 - long term immunity



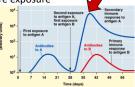


How antibodies work

What if the attacker gets past the B cells in the blood & actually infects

some of your cells?

You need trained assassins to kill off these infected cells!

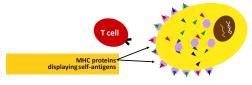

Attack of the

Killer T cells/

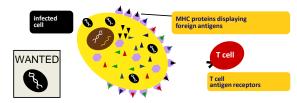
Vaccinations

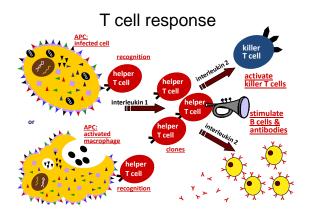
- Immune system exposed to harmless version of pathoger
 - stimulates B cell system to produce antibodies to pathogen
 - "active immunity"
 - rapid response on future exposure
- creates immunity without getting disease!
- Most successful against viruses

T cells


<u>Cell-mediated response</u>

- immune response to infected cells
- viruses, bacteria & parasites (pathogens) within cells
- defense against "non-self" cells
 cancer & transplant cells
- Types of T cells
 - <u>helper T cells</u>
 - alerts immune system
 - killer (cytotoxic) T cells
 - attack infected body cells


How are cells tagged with antigens


- Major histocompatibility (MHC) proteins
 - antigen glycoproteins
- MHC proteins constantly carry bits of cellular material from the cytosol to the cell surface
 - "snapshot" of what is going on inside cell
 - give the surface of cells a unique label or "fingerprint"

How do T cells know a cell is infected?

- Infected cells digest pathogens & MHC proteins bind & carry pieces to cell surface
 - antigen presenting cells (APC)
 - alerts Helper T cells

Cell lysis Attack of the Killer T cells · Destroys infected body cells - binds to target cell - secretes perforin protein · punctures cell membrane of infected cell vesicle Kille<mark>r T cell</mark> Killer T cell binds to infected cell <u>perforin</u> cell membra punctures C cell membra infected cell target cell destroye