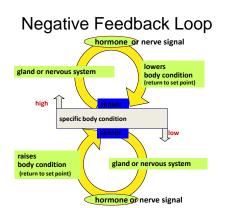
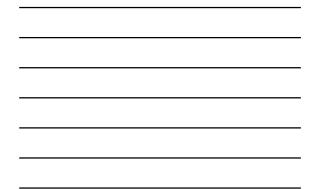
Regulating the Internal Environment

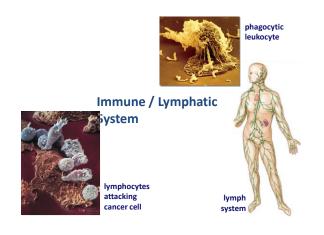
Maintaining Homeostasis

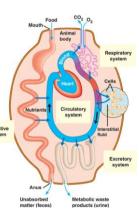
Conformers vs. Regulators


- Two evolutionary paths for organisms
 - regulate internal environment
 - maintain relatively constant internal conditions
 - conform to external environment
 - · allow internal conditions to fluctuate along with external changes

Homeostasis

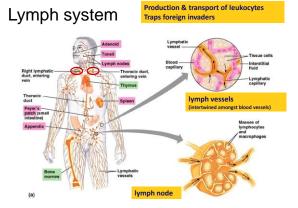

Keeping the balance


- animal body needs to coordinate
 - many systems all at once
 - temperature
 - blood sugar levels
 - energy production
 - water balance & intracellular waste disposal
 - nutrients
 - ion balance
 - cell growth
- maintaining a "steady state" condition

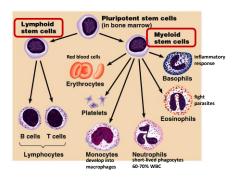

Nervous System Control Controlling Body Temperature brain brain brain constricts surface blood vessels

Avenues of attack

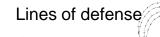
- Points of entry
 - digestive system
 - respiratory system
 - urogenital tract
 - break in skin
- · Routes of attack
 - circulatory system
 - lymph system


Why an immune system?

Attack from outside


- lots of organisms want you for lunch!
- animals are a tasty nutrient- & vitamin-packed meal
 cells are packages of macromolecules
 - no cell wall
 - traded mobility for susceptibility
- animals must defend themselves against invaders
 viruses
 - HIV, flu, cold, measles, chicken pox, SARS
 bacteria
 - pneumonia, meningitis, tuberculosis
 - fungi

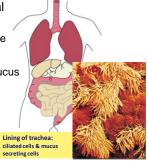
 yeast ("Athlete's foot"...)
 - yeast (Athlete's loot ...,
 protists
 - prousis
 amoeba, Lyme disease, malaria
- Attack from inside
 - defend against abnormal body cells = cancers



Development of Red & White blood cells

- 1st line: <u>Barriers</u>
 broad, <u>external</u> defense
 "walls & moats"
- skin & mucus membranes
 2nd line: <u>Non-specific patrol</u>
 - broad, <u>internal</u> defense
 - "patrolling soldiers"
 <u>leukocytes</u> = <u>phagocytic WBC</u>
- <u>macrophages</u>

 3rd line: <u>Immune system</u>
- specific, <u>acquired immunity</u>
 "spies"
 - Iymphocytes & antibodies
 B cells & T cells



Bacteria & insects inherit <u>resistance</u>. Vertebrates acquire immunity

1st line: External defense

- Physical & chemical defenses
 - non-specific defense
- · external barrier
 - epithelial cells & mucus membranes
 - skin
 - respiratory system
 - digestive system
 - uro-genital tract

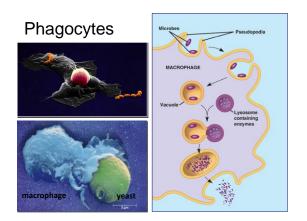
1st line: Chemical barriers on epithelium

- Skin & mucous membrane secretions
 - sweat
 pH 3-5
 - tears
 - washing actionmucus
 - traps microbes
 - saliva
 - anti-bacterial = "lick your wounds"stomach acid
 - pH 2
 anti-microbial proteins

 lysozyme enzyme
 digests bacterial cell walls

2nd line: Internal, broad range patrol

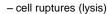
- Innate, general defense
 - rapid response
- Patrolling cells & proteins
 - attack invaders that penetrate body's outer barriers
 - leukocytes
 - <u>phagocytic</u> white blood cells
 complement system
 - anti-microbial proteins
 - inflammatory response



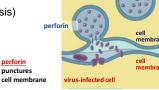
Leukocytes: Phagocytic WBCs

Attracted by chemical

- signals released by damaged cells
- enter infected tissue, engulf & ingest microbes
 bysosomes
- <u>lysosomes</u>
- <u>Neutrophils</u>
 - most abundant WBC (~70%)
 ~ 3 day lifespan
- Macrophages
- "big eater", long-lived
 Natural Killer Cells
 - destroy virus-infected cells
 & cancer cells

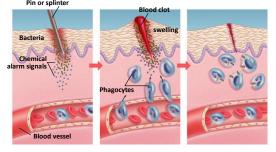

Destroying cells gone bad!

- Natural Killer Cells perforate cells
 - release perforin protein
 - insert into membrane of target cell


perforin

punctures

- forms pore allowing fluid to flow into cell natural killer cell

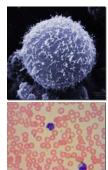

Inflammatory response

- · Damage to tissue triggers local non-specific inflammatory response
 - release <u>histamines</u> & <u>prostaglandins</u>
 - capillaries dilate, more permeable (leaky)
 - increase blood supply delivers WBC, RBC, platelets, clotting factors
 - · fight pathogens
 - clot formation
 - accounts for swelling, redness & heat of inflammation & infection

Inflammatory response

Reaction to tissue damage
 Pin or splinter

Fever


- When a local response is not enough
 - systemic response to infection
 - activated macrophages release <u>interleukin-1</u>
 triggers <u>hypothalamus in brain</u> to readjust body thermostat to raise body temperature
 - higher temperature helps defense
 - inhibits bacterial growth
 - stimulates phagocytosis
 - speeds up repair of tissues
 - causes liver & spleen to store
 - iron, reducing blood iron levels
 bacteria need large amounts of iron to grow

3rd line: Acquired (active) Immunity

• Specific defense

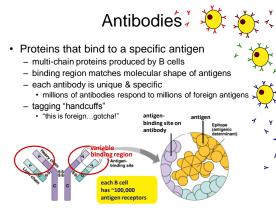
- lymphocytes
 - B lymphocytes (<u>B cells</u>)
 - T lymphocytes (<u>T cells</u>)
- antibodies
- immunoglobulins
- Responds to...
 - antigens
 - · specific pathogens
 - specific toxins
 - abnormal body cells (cancer)

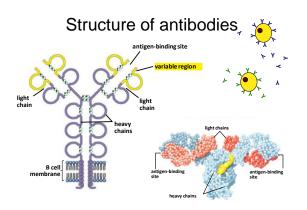
How are invaders recognized: Antigens

<u>Antigens</u>

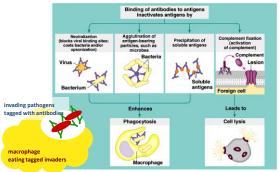
- proteins that serve as cellular name tags
 - foreign antigens cause response from WBCs
 - viruses, bacteria, protozoa, parasitic worms, fungi, toxins
 non-pathogens: pollen & transplanted tissue
- B cells & T cells respond to different antigens
 - B cells recognize intact antigens
 - pathogens in blood & lymph
 - T cells recognize antigen fragments
 - pathogens which have already infected cells

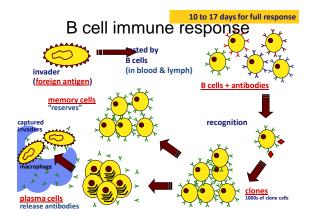
B cells


- <u>Humoral response</u> = "in fluid"
 defense against attackers circulating
- freely in blood & lymph
- Specific response
 produce specific <u>antibodies</u>

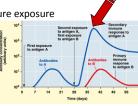


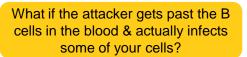

- Types of B cells
 - plasma cells
 immediate production of antibodies
 - rapid response, short term release
 - memory cells
 - long term immunity





How antibodies work


Vaccinations



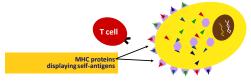
- to harmless version of pathoger • <u>stimulates B cell system to produce</u> <u>antibodies to pathogen</u> • "active immunity"
 - "active immunity"

Immune system exposed

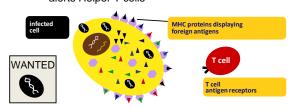
- rapid response on future exposure
- creates immunity without getting disease!
- Most successful against viruses

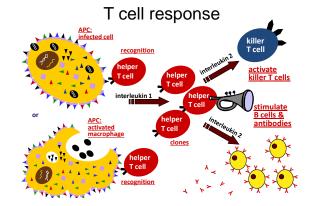
You need trained assassins to kill off these infected cells!

T cells


• Cell-mediated response

- immune response to infected cells
 - viruses, bacteria & parasites (pathogens) within cells
- defense against "non-self" cells
 cancer & transplant cells
- · Types of T cells
 - helper T cells
 - alerts immune system
 - killer (cytotoxic) T cells
 - · attack infected body cells


How are cells tagged with antigens


- Major histocompatibility (MHC) proteins
 - antigen glycoproteins
- MHC proteins constantly carry bits of cellular material from the cytosol to the cell surface
 - "snapshot" of what is going on inside cell
 - give the surface of cells a unique label or "fingerprint"

How do T cells know a cell is infected?

- Infected cells digest pathogens & MHC proteins bind & carry pieces to cell surface
 - <u>antigen presenting cells</u> (APC)
 alerts Helper T cells

Cell lysis Attack of the Killer T cells 00 1 · Destroys infected body cells - binds to target cell - secretes perforin protein · punctures cell membrane of infected cell vesicle Kille<mark>r T cell</mark> Killer T cell binds to infected cell 0 0 cell membr perforin punctures cell membran infected cell destroyed target cell

12