

From Light reactions to Calvin cycle

- Calvin cycle
 - chloroplast stroma
- Need products of light reactions to drive synthesis reactions

stroma

To G3P and Beyond!

- Glyceraldehyde-3-P
 - end product of Calvin cycle
 - energy rich <u>3 carbon sugar</u>
 - "C3 photosynthesis"
- G3P is an important intermediate
 - $\begin{array}{ccc} \mathsf{G3P} & \to \to & \mathsf{glucose} \to \to \end{array}$

carbohydrates

- \rightarrow \rightarrow lipids \rightarrow \rightarrow phospholipids, fats, waxes
- \rightarrow \rightarrow amino acids \rightarrow \rightarrow proteins
- AP Biology $\rightarrow \rightarrow$ nucleic acids $\rightarrow \rightarrow$ DNA, RNA

RuBisCo

- Enzyme which <u>fixes carbon</u> from air
 - ribulose bisphosphate carboxylase
 - the most important enzyme in the world!
 it makes life out of air!
 - definitely the most abundant enzyme

AP Biology

Light Reactions H₂O + light energy → ATP + NADPH + O₂ • produces ATP • produces NADPH • releases O₂ as a waste product

