

Extending Mendelian genetics Mendel worked with a simple system peas are genetically simple most traits are controlled by a single gene each gene has only 2 alleles, 1 of which is completely dominant to the other The relationship between genotype & phenotype is rarely that simple

P Biold

				_
pheno- type	genotype	antigen on RBC	antibodies in blood	donatio status
Α		antigens on surface of RBC	antibodies	
В		antigens on surface of RBC	antibodies	
AB		antigens on surface of RBC	antibodies	
Ο		on surface of RBC	antibodies	

Genes on sex chromosomes Y chromosome few genes other than <u>SRY</u> sex-determining region master regulator for maleness turns on genes for production of male hormones many effects = pleiotropy! X chromosome other genes/traits beyond sex determination mutations: hemophilia Duchenne muscular dystrophy

AP Biology

color-blindness

<text><text><list-item>

Male pattern baldness

- Sex influenced trait
 - autosomal trait influenced by sex hormones
 age effect as well = onset after 30 years old
 - dominant in males & recessive in females
 B_ = bald in males; bb = bald in females

