

Making Energy

- Cells must convert incoming energy to forms that they can use for work
 - <u>mitochondria</u>: from glucose to ATP

<u>chloroplasts</u>:

- from sunlight to ATP & carbohydrates
- ATP = active energy
- carbohydrates = stored energy

Mitochondria & Chloroplasts

· Important to see the similarities

- transform energy
 - generate ATP
- double membranes = 2 membranes
- semi-autonomous organelles
 - move, change shape, divide
- internal ribosomes, DNA & enzymes

Mitochondria

Function

- cellular respiration

- generate ATP
 - from breakdown of sugars, fats & other fuels
 - in the presence of oxygen
 - break down larger molecules into smaller to generate energy = <u>catabolism</u>
 - generate energy in presence of O₂ = <u>aerobic</u>
 <u>respiration</u>

Mitochondria

- Structure
 - 2 membranes
 - smooth outer membrane
 - highly folded inner membrane
 cristae
 - fluid-filled space between 2 membranes
 - internal fluid-filled space
 - mitochondrial matrix
 - DNA, ribosomes & enzymes

Dividing Mitochondria

Mitochondria

- · Almost all eukaryotic cells have mitochondria
 - there may be 1 very large mitochondrion or 100s to 1000s of individual mitochondria
 - number of mitochondria is correlated with aerobic metabolic activity
 - more activity = more energy needed = more mitochondria
 What cells would have a lot of mitochondria?

nerve cells

Chloroplasts

- Chloroplasts are <u>plant</u> organelles
 - class of plant structures = plastids
 - <u>amyloplasts</u>
 - store starch in roots & tubers
 - <u>chromoplasts</u>
 - store pigments for fruits & flowers
 - chloroplasts
 - store chlorophyll & function in photosynthesis
 - in leaves, other green
 - structures of plants & in eukaryotic algae

Chloroplasts

- Structure
 - 2 membranes
 - stroma = internal fluid-filled space
 - DNA, ribosomes & enzymes
 - <u>thylakoids</u> = membranous sacs where ATP is made
 - <u>grana</u> = stacks of thylakoids

Why internal sac membranes?

increase surface area for membrane-bound enzymes that synthesize ATP

Membrane-bound Enzymes

Chloroplasts

- Function
 - photosynthesis
 - generate ATP & synthesize sugars
 - transform solar energy into chemical energy
 - produce sugars from $CO_2 \& H_2O$
- Semi-autonomous
 - moving, changing shape & dividing

can reproduce by pinching in two
 Who else divides like
 that?
 bacteria!

Mitochondria & chloroplasts are different

- · Organelles not part of endomembrane system
- Grow & reproduce
 - semi-autonomous organelles
- Proteins primarily from free ribosomes in cytosol & a few from their own ribosomes
- Own circular chromosome
 - directs synthesis of proteins produced by own internal ribosomes
 - · ribosomes like bacterial ribosomes

Who else has a circular chromosome not bound within a nucleus?

bacteria

Endosymbiosis theory

- Mitochondria & chloroplasts were once free living bacteria
 - engulfed by ancestral eukaryote
- Endosymbiont
 - cell that lives within another cell (host)
 - as a partnership
 - evolutionary advantage for both
 - one supplies energy
 - the other supplies raw materials & protection Lynn Margulis U of M, Amherst

<section-header>

Compare the equations

Photosynthesis

carbon dioxide	+ water + energy → glucose + oxygen	
6CO ₂	+ $6H_2O$ + light energy $\rightarrow c_6H_{12}O_6$ + 6	0 ₂
espiratio	ion	

glucose + oxygen → carbon + water + energy
dioxide

$$C_6H_{12}O_6$$
 + $6O_2$ → \Box $6CO_2$ + $6H_2O$ + ATP

Vacuoles in plants

- Functions
 - storage
 - · stockpiling proteins or inorganic ions
 - depositing metabolic byprc
 - storing pigments
 - storing defensive compounds against herbivores
 - selective membrane
 control what comes
 - in or goes out

Lysosomal enzymes

- Lysosomal enzymes work best at pH 5
 - organelle creates custom pH
 - how?
 - proteins in lysosomal membrane pump H+ ions from the cytosol into lysosome
 - why?
 - enzymes are very sensitive to pH
 - why?
 - enzymes are proteins pH affects structure
 - why evolve digestive enzymes which function at pH
 - different from cytosol?digestive enzymes won't function well if some leak into
 - cytosol = don't want to digest yourself!

When things go bad...

- Diseases of lysosomes are often fatal
 - digestive enzyme not working in lysosome
 - picks up biomolecules, but can't digest one
 lysosomes fill up with <u>undigested</u> material
 - grow larger & larger until disrupts cell & organ function
 - <u>lysosomal storage diseases</u>
 more than 40 known diseases
 - example: <u>Tay-Sachs disease</u> build up undigested fat in brain cells

Lysosomal storage diseases

- · Lipids
 - Gaucher's disease
 - Niemann-Pick disease
 - Tay Sachs
- · Glycogen & other poylsaccharides
 - Farber disease
 - Krabbe disease
- Proteins
 - Schindler's disease

But sometimes cells *need* to die...

- Lysosomes can be used to kill cells when they are supposed to be destroyed
 - some cells have to die for proper development in an organism
 - <u>apoptosis</u>
 - "auto-destruct" process
 - lysosomes break open & kill cell
 - <u>ex</u>: tadpole tail gets re-absorbed when it turns into a frog
 - <u>ex</u>: loss of webbing between your fingers during fetal development

Apoptosis

- programmed destruction of cells in multicellular organisms
 - programmed development
 - control of cell growth
 - example:
 - if cell grows uncontrollably this <u>self-destruct</u> <u>mechanism</u> is triggered to remove damaged cell
 - cancer must over-ride this to enable tumor growth