No!

zygote

Doesn't work!

How about the rest of us?

- What if a complex multicellular organism (like us) wants to reproduce?
- joining of egg + spermDo we make egg & sperm by mitosis?

egg

Homologous chromosomes

How do we make sperm & eggs?

Meiosis: production of gametes

single stranded

homologous

chromosomes

- Alternating stages
 - chromosome number must be reduced
 - <u>diploid</u> \rightarrow <u>haploid</u>
 - $\underline{2n} \rightarrow \underline{n}$
 - humans: $46 \rightarrow 23$
 - <u>meiosis</u> reduces chromosome number
 - makes gametes
 - <u>fertilization</u> restores
 - chromosome number
 haploid → diploid
 - n → 2n

double stranded

homologous chromosomes

Sexual reproduction lifecycle

Crossing over

Mitosis vs. Meiosis

- Mitosis
 - <u>1 division</u>
 - daughter cells genetically <u>identical</u> to parent cell
 - produces <u>2 cells</u>
 - $-\underline{2n \rightarrow 2n}$
 - produces <u>cells for</u> growth & repair
 - no crossing over

- Meiosis
 - <u>2 divisions</u>
 - daughter cells genetically <u>different</u> from parent
 - produces <u>4 cells</u>
 - $-2n \rightarrow 1n$
 - produces gametes
 - <u>crossing over</u>

ΧX XX

Mitosis vs. Meiosis

Putting it all together...

meiosis \rightarrow fertilization \rightarrow mitosis + development

The value of sexual reproduction

<u>Sexual reproduction introduces genetic variation</u>

- mixing of alleles across homologous chromosomes
 random fertilization
- which sperm fertilizes which egg?
- Driving evolution

XX XX

metaphase1

providing variation for natural selection

Variation from genetic recombination

- Independent assortment of chromosomes
 - meiosis introduces genetic variation
 - gametes of offspring do not have same combination of genes as gametes from parents
 random assortment in humans produces
 - 2²³ (8,388,608) different combinations in gametes

Variation from crossing over

- Crossing over creates completely new combinations of traits on each chromosome
 - creates an <u>infinite</u> variety in gametes

Variation from random fertilization

• Sperm + Egg = ?

 any 2 parents will produce a zygote with over 70 trillion (2²³ x 2²³) possible diploid combinations

Sexual reproduction creates variability

Sexual reproduction allows us to maintain both genetic similarity & differences.

