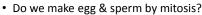
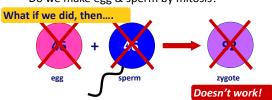


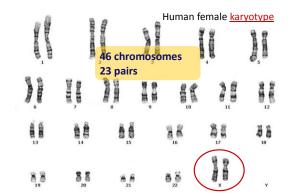
Meiosis & Sexual Reproduction

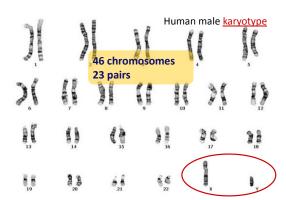
Cell division / Asexual reproduction

- Mitosis
 - produce cells with same information
 - · identical daughter cells
 - exact copies
 - clones
 - same amount of DNA
 - same number of chromosomes
 - same genetic information


Asexual reproduction • Single-celled eukaryotes - yeast (fungi) - Protists • Paramecium • Amoeba • Simple multicellular eukaryotes - Hydra What are the disadvantages of asexual reproduction? What are the advantages? What are the advantages?


How about the rest of us?


• What if a complex multicellular organism (like us) wants to reproduce?


No!

- joining of egg + sperm

Homologous chromosomes

- · Paired chromosomes
 - both chromosomes of a pair carry "matching" genes
 - · control same inherited characters
- homologous = same information
 diploid
 2n
 2n = 4

 single stranded homologous chromosomes
 homologous chromosomes

How do we make sperm & eggs?

Must reduce 46 chromosomes → 23

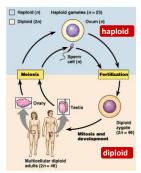
- must reduce the number of chromosomes by half

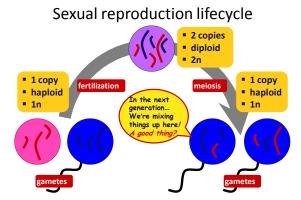
23

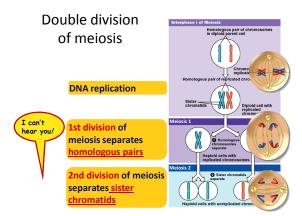
week

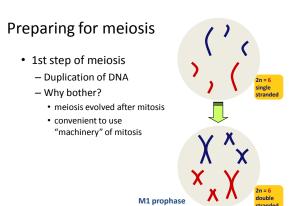
23

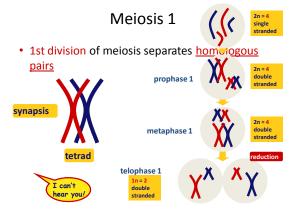
23

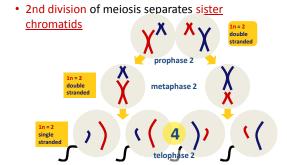

46


23


fertilization


Meiosis: production of gametes


- Alternating stages
 - chromosome number must be reduced
 - $\underline{\text{diploid}} \rightarrow \underline{\text{haploid}}$
 - $\underline{2n} \rightarrow \underline{n}$
 - − humans: $46 \rightarrow 23$
 - <u>meiosis</u> reduces chromosome number
 - makes gametes
 - <u>fertilization</u> restores chromosome number
 - haploid \rightarrow diploid
 - $n \rightarrow 2n$



Meiosis 2

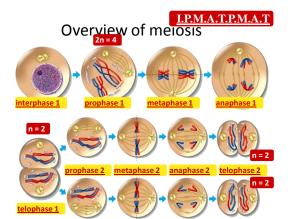
Steps of meiosis

•	M	eio	sis	1

- interphase
- prophase 1
- metaphase 1
- anaphase 1
- telophase 1

• Meiosis 2

- prophase 2
- metaphase 2
- anaphase 2
- telophase 2

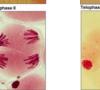

1st division of				
meiosis separates				
homologous pairs				
(2n → 1n)				

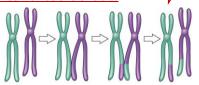
"reduction division"

2nd division of meiosis separates <u>sister</u> chromatids

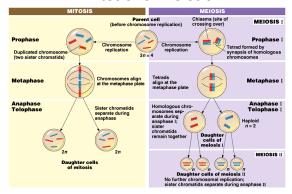
 $(1n \rightarrow 1n)$

* just like mitosis *


Meiosis 1 & 2


• Crossing over - during Prophase 1, sister chromatids intertwine • homologous pairs swap pieces of chromosome - DNA breaks & re-attaches

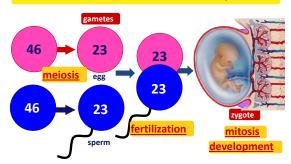
Crossing over


What are the advantages of

crossing over in sexual reproduction?

- 3 steps
 - cross over
 - breakage of DNA
 - re-fusing of DNA
- New combinations of traits

Mitosis vs. Meiosis


Mitosis vs. Meiosis

- Mitosis
 - 1 division
 - daughter cells genetically <u>identical</u> to parent cell
 - produces <u>2 cells</u>
 - $-2n \rightarrow 2n$
 - produces <u>cells for</u> growth & repair
 - no crossing over

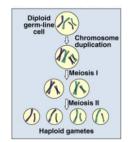
- Meiosis
 - 2 divisions
 - daughter cells genetically <u>different</u> from parent
 - produces <u>4 cells</u>
 - $-2n \rightarrow 1n$
 - produces gametes
 - crossing over

Putting it all together...

meiosis → fertilization → mitosis + development

The value of sexual reproduction

- <u>Sexual reproduction introduces genetic variation</u>
 - genetic recombination
 - <u>independent assortment</u> of chromosomes
 - random alignment of homologous chromosomes in Metaphase 1
 - crossing over
 - mixing of alleles across homologous chromosomes
 - random fertilization
 - which sperm fertilizes which egg?
- · Driving evolution
 - providing variation for natural selection


Variation from genetic recombination

- Independent assortment of chromosomes
 - meiosis introduces genetic variation
 - gametes of offspring do not have same combination of genes as gametes from parents
 - random assortment in humans produces 2²³ (8,388,608) different combinations in gametes

Variation from crossing over

- Crossing over creates completely new combinations of traits on each chromosome
 - creates an <u>infinite</u>
 variety in gametes

Variation from random fertilization

- Sperm + Egg = ?
 - any 2 parents will produce a zygote with over 70 trillion (2²³ x 2²³) possible diploid combinations

Sexual reproduction creates variability

Sexual reproduction allows us to maintain both genetic similarity & differences.

Ben and Casey Affleck

Zooey and Emily Deschanel

Baldwin Brothers